A tightly wound solenoid is 15 cm long, has 350 turns, and carries a current of 4.0 A. If you ignore end effects, you will find that the value of app at the center of the solenoid when there is no core is approximately

Answers

Answer 1
Answer:

Answer:

The magnetic field at the center of the solenoid is approximately  0.0117 T

Explanation:

Given;

length of the solenoid, L = 15 cm = 0.15 m

number of turns of the solenoid, N = 350 turns

current in the solenoid, I = 4.0 A

The magnetic field at the center of the solenoid is given by;

B = \mu_o ((N)/(L) )I\n\nB = (4 \pi *10^(-7))((350)/(0.15) )(4.0)\n\nB = 0.0117 \ T

Therefore, the magnetic field at the center of the solenoid is approximately  0.0117 T.


Related Questions

The graph below shows the velocity of a car as it attempts to set a speedrecord.Velocity vs. Time140013001200110010004 4531 (s)At what point is the car the fastest?A. t = 1.0 sB. t = 4.2 sC. t = 3.0 sD. t = 4.5 s
A block sliding on ground where μk = .193 experiences a 14.7 N friction force. What is the mass of the block
An element emits light at two nearly equal wavelengths, 577 nm and 579 nm If the light is normally incident on a diffraction grating with 2000 lines/cm., what is the distance between the 3rd order fringes of the two wavelengths on a screen 1 m from the grating?
A farmer is using a rope and pulley to lift a bucket of water from the bottom of a well. the farmer uses a force f1=57.5 n to pull the bucket of water upwards. the total mass of the bucket of water is f2= 3.9kg. -Calculate how much work Wg in J gravity does on the bucket filled with water as the farmer lifts it up the well. -Calculate the net work Wnet in J done on the bucket of water by the two forces F1 and Fg.
A virtual image produced by a lens is always

A vertical straight wire carrying an upward 24-A current exerts an attractive force per unit length of 88 X 104N/m on a second parallel wire 7.0 cm away. What current (magnitude and direction) flows in the second wire?

Answers

Answer:

The current flows in the second wire is 1.3*10^(10)\ A

Explanation:

Given that,

Upward current = 24 A

Force per unit length(F)/(l) =88*10^(4)\ N/m

Distance = 7.0 cm

We need to calculate the current in second wire

Using formula of magnetic force

F=ILB

(F)/(l)=(\mu I_(1)I_(2))/(2\pi r)

Where,

(F)/(l)=force per unit length

I₁= current in first wire

I₂=current in second wire

r = distance between the wires

Put the value into the formula

88*10^(4)=(4\pi*10^(-7)*24* I_(2))/(2\pi *7*10^(-2))

I_(2)=(88*10^(4)*7*10^(-2))/(2**10^(-7)*24)

I_(2)=1.3*10^(10)\ A

Hence, The current flows in the second wire is 1.3*10^(10)\ A

A model airplane with a mass of 0.741kg is tethered by a wire so that it flies in a circle 30.9 m in radius. The airplane engine provides anet thrust of 0.795 N perpendicular tothe tethering wire.(a) Find the torque the net thrust producesabout the center of the circle.
N·m

(b) Find the angular acceleration of the airplane when it is inlevel flight.
rad/s2

(c) Find the linear acceleration of the airplane tangent to itsflight path.
m/s2

Answers

(a) 24.6 Nm

The torque produced by the net thrust about the center of the circle is given by:

\tau = F r

where

F is the magnitude of the thrust

r is the radius of the wire

Here we have

F = 0.795 N

r = 30.9 m

Therefore, the torque produced is

\tau = (0.795 N)(30.9 m)=24.6 N m

(b) 0.035 rad/s^2

The equivalent of Newton's second law for a rotational motion is

\tau = I \alpha

where

\tau is the torque

I is the moment of inertia

\alpha is the angular acceleration

If we consider the airplane as a point mass with mass m = 0.741 kg, then its moment of inertia is

I=mr^2 = (0.741 kg)(30.9 m)^2=707.5 kg m^2

And so we can solve the previous equation to find the angular acceleration:

\alpha = (\tau)/(I)=(24.6 Nm)/(707.5 kg m^2)=0.035 rad/s^2

(c) 1.08 m/s^2

The linear acceleration (tangential acceleration) in a rotational motion is given by

a=\alpha r

where in this problem we have

\alpha = 0.035 rad/s^2 is the angular acceleration

r = 30.9 m is the radius

Substituting the values, we find

a=(0.035 rad/s^2)(30.9 m)=1.08 m/s^2

Testosterone is an example of what kind of biomolecule?​

Answers

Answer:

Among the four biomolecules: carbohydrates, lipids, nucleic acids, and proteins it falls on the category of protein.

Explanation:

Testosterone, also known as 17-beta-hydroxy-4-androstene-3-one, is an androgen steroid hormone. It is largely released by the testes in males and the ovaries in females, although it is also secreted in minor amounts by the adrenal glands.

A piccolo and a flute can be approximated as cylindrical tubes with both ends open. The lowest fundamental frequency produced by one kind of piccolo is 522.5 Hz, and that produced by one kind of flute is 256.9 Hz. What is the ratio of the piccolo's length to the flute's length?

Answers

Answer:

ratio of the piccolo's length to the flute's length is 0.4916

Explanation:

given data

frequency of piccolo = 522.5 Hz

frequency of flute = 256.9 Hz

to find out

ratio of the piccolo's length to the flute's length

solution

we get here length of tube that is express as

length of tube = velocity of sound ÷ fundamental frequency .......................1

so here ratio of Piccolo length to flute that is

(L\ picco)/(L\ flute)  = (f\ flute)/(f \ piccolo)

(l \ piccolo)/(L\ flute) = (256.9)/(522.5)  =  0.4916

so ratio of the piccolo's length to the flute's length is 0.4916

A large balloon of mass 210 kg is filled with helium gas until its volume is 329 m3. Assume the density of air is 1.29 kg/m3 and the density of helium is 0.179 kg/m3. (a) Draw a force diagram for the balloon. (Submit a file with a maximum size of 1 MB.) (b) Calculate the buoyant force acting on the balloon. (Give your answer to at least three significant figures.) 4159 N (c) Find the net force on the balloon. 1524 N Determine whether the balloon will rise or fall after it is released. The balloon will (d) What maximum additional mass can the balloon support in equilibrium? 155 kg (e) What happens to the balloon if the mass of the load is less than the value calculated in part (d)? The balloon and its load will remain stationary. The balloon and its load will accelerate downward. The balloon and its load will accelerate upward. (f) What limits the height to which the balloon can rise?

Answers

(a) See figure in attachment (please note that the image should be rotated by 90 degrees clockwise)

There are only two forces acting on the balloon, if we neglect air resistance:

- The weight of the balloon, labelled with W, whose magnitude is

W=mg

where m is the mass of the balloon+the helium gas inside and g is the acceleration due to gravity, and whose direction is downward

- The Buoyant force, labelled with B, whose magnitude is

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity, and where the direction is upward

(b) 4159 N

The buoyant force is given by

B=\rho_a V g

where \rho_a is the air density, V is the volume of the balloon and g the acceleration due to gravity.

In this case we have

\rho_a = 1.29 kg/m^3 is the air density

V=329 m^3 is the volume of the balloon

g = 9.8 m/s^2 is the acceleration due to gravity

So the buoyant force is

B=(1.29 kg/m^3)(329 m^3)(9.8 m/s^2)=4159 N

(c) 1524 N

The mass of the helium gas inside the balloon is

m_h=\rho_h V=(0.179 kg/m^3)(329 m^3)=59 kg

where \rho_h is the helium density; so we the total mass of the balloon+helium gas inside is

m=m_h+m_b=59 kg+210 kg=269 kg

So now we can find the weight of the balloon:

W=mg=(269 kg)(9.8 m/s^2)=2635 N

And so, the net force on the balloon is

F=B-W=4159 N-2635 N=1524 N

(d) The balloon will rise

Explanation: we said that there are only two forces acting on the balloon: the buoyant force, upward, and the weight, downward. Since the magnitude of the buoyant force is larger than the magnitude of the weigth, this means that the net force on the balloon points upward, so according to Newton's second law, the balloon will have an acceleration pointing upward, so it will rise.

(e) 155 kg

The maximum additional mass that the balloon can support in equilibrium can be found by requiring that the buoyant force is equal to the new weight of the balloon:

W'=(m'+m)g=B

where m' is the additional mass. Re-arranging the equation for m', we find

m'=(B)/(g)-m=(4159 N)/(9.8 m/s^2)-269 kg=155 kg

(f) The balloon and its load will accelerate upward.

If the mass of the load is less than the value calculated in the previous part (155 kg), the balloon will accelerate upward, because the buoyant force will still be larger than the weight of the balloon, so the net force will still be pointing upward.

(g) The decrease in air density as the altitude increases

As the balloon rises and goes higher, the density of the air in the atmosphere decreases. As a result, the buoyant force that pushes the balloon upward will decrease, according to the formula

B=\rho_a V g

So, at a certain altitude h, the buoyant force will be no longer greater than the weight of the balloon, therefore the net force will become zero and the balloon will no longer rise.

Final answer:

The physics involved in the functioning of helium balloons is based on buoyancy and Archimedes' Principle. The forces at play include the force due to gravity, the buoyant force and the net force, which determines the motion of the balloon. The balloon's height limit is determined by the decrease in air density with altitude.

Explanation:

The several parts of this question are related to the principles of buoyancy and Archimedes' Principle. First, regarding the force diagram for the balloon (part a), it would show two primary forces. The force due to gravity (Fg) acting downwards and the buoyant force (Fb) acting upwards, which is a result of the displacement of air by the balloon. The net force mentioned in part (c) is calculated as the difference between these two forces.

Calculating the buoyant force (part b) involves multiplying the volume of the balloon by the density of the air and the acceleration due to gravity (Fb = V * ρ_air * g). For the net force on the balloon (part c), this is calculated by subtracting the weight of the balloon from the buoyant force (F_net = Fb - Fg). If the net force is positive, the balloon will rise, if it's negative, the balloon will fall, and if it is zero, the balloon will remain stationary.

The maximum additional mass the balloon can support in equilibrium (part d) is calculated using the net force divided by gravity. If the mass of the load is less than this value (part e), the balloon and its load will accelerate upward.

Lastly, the limit to the height to which the balloon can rise (part f) is determined by the decreasing density of the air as the balloon ascends. The buoyant force reduces as the balloon rises because the air density is lower at higher altitudes.

Learn more about Buoyancy here:

brainly.com/question/31237221

#SPJ3

Please use Gauss’s law to find the electric field strength E at a distance r from the center of a sphereof radius R with volume charge density ???? = cr 3 and total charge ????. Your answer should NOT contain c. Be sure to consider regions inside and outside the sphere.

Answers

Answer:

See the explaination for the details.

Explanation:

Gauss Law states that the total electric flux out of a closed surface is equal to the charge enclosed divided by the permittivity. The electric flux in an area is defined as the electric field multiplied by the area of the surface projected in a plane and perpendicular to the field.

According to the Gauss law, the total flux linked with a closed surface is 1/ε0 times the charge enclosed by the closed surface.

Please kindly check attachment for the step by step explaination of the answer.

Other Questions