A screw can be considered a type of

Answers

Answer 1
Answer: Fastener because a fastener is something that connects to objects and usually can come apart but can also be permanent

Related Questions

A horizontal cylindrical tank 8.00 ft in diameter is half full of oil (60.0 Ib/ft3). Find the force on one end
A glass plate 2.95 mmmm thick, with an index of refraction of 1.60, is placed between a point source of light with wavelength 600 nmnm (in vacuum) and a screen. The distance from source to screen is 1.25 cm. How many wavelengths are there between the source and the screen?
A 110 kg ice hockey player skates at 3.0 m/s toward a railing at the edge of the ice and then stops himself by grasping the railing with his outstretched arms. During the stopping process, his center of mass moves 30 cm toward the railing. (a) What is the change in the kinetic energy of his center of mass during this process? (b) What average force must he exert on the railing?
You hit a hockey puck and it slides across the ice at nearly a constant speed.Is a force keeping it in motion?Explain.
Students have four identical, hollow, uncharged conducting spheres, W, X, Y, and Z.Sphere Z is given a positive charge of +40 C. Sphere Z is touched first to sphere W, then sphere X, and finally to sphere Y. What is the resulting charge on sphere Y?a. +5 μεb. +10 μCc. +20 μCd. +40 με​

A battery with an emf of 12.0 V shows a terminal voltage of 11.7 V when operating in a circuit with two lightbulbs, each rated at 4.0 W (at 12.0 V), which are connected in parallel.What is the battery's internal resistance?

Answers

Answer:

0.46Ω

Explanation:

The electromotive force (E) in the circuit is related to the terminal voltage(V), of the circuit and the internal resistance (r) of the battery as follows;

E = V + Ir                      --------------------(a)

Where;

I = current flowing through the circuit

But;

V = I x Rₓ                    ---------------------(b)

Where;

Rₓ = effective or total resistance in the circuit.

First, let's calculate the effective resistance in the circuit:

The effective resistance (Rₓ) in the circuit is the one due to the resistances in the two lightbulbs.

Let;

R₁ = resistance in the first bulb

R₂ = resistance in the second bulb

Since the two bulbs are both rated at 4.0W ( at 12.0V), their resistance values (R₁ and R₂) are the same and will be given by the power formula;

P = (V^(2) )/(R)

=> R = (V^(2) )/(P)             -------------------(ii)

Where;

P = Power of the bulb

V = voltage across the bulb

R = resistance of the bulb

To get R₁, equation (ii) can be written as;

R₁ = (V^(2) )/(P)    --------------------------------(iii)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iii) as follows;

R₁ = (12.0^(2) )/(4)

R₁ = (144)/(4)

R₁ = 36Ω

Following the same approach, to get R₂, equation (ii) can be written as;

R₂ = (V^(2) )/(P)    --------------------------------(iv)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iv) as follows;

R₂ = (12.0^(2) )/(4)

R₂ = (144)/(4)

R₂ = 36Ω

Now, since the bulbs are connected in parallel, the effective resistance (Rₓ) is given by;

(1)/(R_(X) ) = (1)/(R_1) + (1)/(R_2)       -----------------(v)

Substitute the values of R₁ and R₂ into equation (v) as follows;

(1)/(R_X) = (1)/(36) + (1)/(36)

(1)/(R_X) = (2)/(36)

Rₓ = (36)/(2)

Rₓ = 18Ω

The effective resistance (Rₓ) is therefore, 18Ω

Now calculate the current I, flowing in the circuit:

Substitute the values of V = 11.7V and Rₓ = 18Ω into equation (b) as follows;

11.7 = I x 18

I = (11.7)/(18)

I = 0.65A

Now calculate the battery's internal resistance:

Substitute the values of E = 12.0, V = 11.7V and I = 0.65A  into equation (a) as follows;

12.0 = 11.7 + 0.65r

0.65r = 12.0 - 11.7

0.65r = 0.3

r = (0.3)/(0.65)

r = 0.46Ω

Therefore, the internal resistance of the battery is 0.46Ω

Answer:

R_i_n_t=0.45 \Omega

Explanation:

Internal resistance is a concept that helps model the electrical consequences of the complex chemical reactions that occur within a battery. When a charge is applied to a battery, the internal resistance can be calculated using the following equation:

R_i_n_t=((V_N_L)/(V_F_L) -1)R_L

Where:

V_F_L=Load\hspace{3}voltage=11.7V\nV_N_L= O pen\hspace{3}circuit\hspace{3}voltage=12V\nR_L=Load\hspace{3}resistance

As you can see, we don't know the exactly value of the R_L. However we can calculated that value using the next simple operations:

The problem tell us that the power of each lightbulb is 4.0 W at 12.0 V, hence let's calculated the power at 11.7V using Cross-multiplication:

(12)/(11.7) =(4)/(P)

Solving for P :

P=(11.7*4)/(12) =3.9W

Now, the electric power is given by:

P=(V^2)/(R_b)

Where:

R_b=Resistance\hspace{3}of\hspace{3}each\hspace{3}lightbulb

So:

R_b=(V^2)/(P) =(11.7^2)/(3.9) =35.1\Omega

Now, because of the lightbulbs are connected in parallel the equivalent resistance is given by:

(1)/(R_L) =(1)/(R_b) +(1)/(R_b) =(2)/(R_b) \n\n R_L= (R_b)/(2) =(35.1)/(2)=17.55\Omega

Finally, now we have all the data, let's replace it into the internal resistance equation:

R_i_n_t=((12)/(11.7) -1)17.55=0.45\Omega

A vertical straight wire carrying an upward 24-A current exerts an attractive force per unit length of 88 X 104N/m on a second parallel wire 7.0 cm away. What current (magnitude and direction) flows in the second wire?

Answers

Answer:

The current flows in the second wire is 1.3*10^(10)\ A

Explanation:

Given that,

Upward current = 24 A

Force per unit length(F)/(l) =88*10^(4)\ N/m

Distance = 7.0 cm

We need to calculate the current in second wire

Using formula of magnetic force

F=ILB

(F)/(l)=(\mu I_(1)I_(2))/(2\pi r)

Where,

(F)/(l)=force per unit length

I₁= current in first wire

I₂=current in second wire

r = distance between the wires

Put the value into the formula

88*10^(4)=(4\pi*10^(-7)*24* I_(2))/(2\pi *7*10^(-2))

I_(2)=(88*10^(4)*7*10^(-2))/(2**10^(-7)*24)

I_(2)=1.3*10^(10)\ A

Hence, The current flows in the second wire is 1.3*10^(10)\ A

"A proton is placed in a uniform electric field of 2750 N/C. You may want to review (Page) . For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Electron in a uniform field. Calculate the magnitude of the electric force felt by the proton. Express your answer in newtons.(F = ? )Calculate the proton's acceleration.
( a= ? m/s2 )

Calculate the proton's speed after 1.40 {\rm \mu s} in the field, assuming it starts from rest.
( V= ? m/s )"

Answers

To solve this problem we will start from the definition of Force, as the product between the electric field and the proton charge. Once the force is found, it will be possible to apply Newton's second law, and find the proton acceleration, knowing its mass. Finally, through the linear motion kinematic equation we will find the speed of the proton.

PART A ) For the electrostatic force we have that is equal to

F=qE

Here

q= Charge

E = Electric Force

F=(1.6*10^(-19)C)(2750N/C)

F = 4.4*10^(-16)N

PART B) Rearrange the expression F=ma for the acceleration

a = (F)/(m)

Here,

a = Acceleration

F = Force

m = Mass

Replacing,

a = (4.4*10^(-16)N)/(1.67*10^(-27)kg)

a = 2.635*10^(11)m/s^2

PART C) Acceleration can be described as the speed change in an instant of time,

a = (v_f-v_i)/(t)

There is not v_i then

a = (v_f)/(t)

Rearranging to find the velocity,

v_f = at

v_f = (2.635*10^(11))(1.4*10^(-6))

v_f = 3.689*10^(5)m/s

Final answer:

The magnitude of the electric force felt by the proton is 4.4 x 10^-16 N. The proton's acceleration is 2.64 x 10^11 m/s^2. The proton's speed after 1.40 μs in the field is 3.70 x 10^5 m/s.

Explanation:

The charge of a proton is 1.6 x 10-19 coulombs and the electric field strength is 2750 N/C. Therefore, the magnitude of the electric force felt by the proton is (1.6 x 10-19 C)(2750 N/C) = 4.4 x 10-16 N. The mass of a proton is approximately 1.67 x 10-27 kilograms. Therefore, the proton's acceleration is (4.4 x 10-16 N)/(1.67 x 10-27 kg) = 2.64 x 1011 m/s2. Since the proton starts from rest, its initial velocity (u) is 0. Therefore, the proton's speed after 1.40 μs is v = (2.64 x 1011 m/s2)(1.40 x 10-6 s) = 3.70 x 105 m/s.

Learn more about Proton in Electric Field here:

brainly.com/question/32825186

#SPJ3

Two small objects each with a net charge of +Q exert a force of magnitude F on each other. We replace one of the objects with another whose net charge is + 4Q. We move the +Q and +4Q charges to be 3 times as far apart as they were. What is the magnitude of the force on the +4Q charge ?A. F

B. 4F

C. 4F/3

D. 4F/9

E. F/3

Answers

Answer:

F'= 4F/9

Explanation:

Two small objects each with a net charge of +Q exert a force of magnitude F on each other. If r is the distance between them, then the force is given by :

F=(kQ^2)/(r^2) ...(1)

Now, if one of the objects with another whose net charge is + 4Q is replaced and also the distance between +Q and +4Q charges is increased 3 times as far apart as they were. New force is given by :

F'=(kQ* 4Q)/((3r)^2)\n\nF'=(4kQ^2)/(9r^2).....(2)

Dividing equation (1) and (2), we get :

(F)/(F')=((kQ^2)/(r^2))/((4kQ^2)/(9r^2))\n\n(F)/(F')=(kQ^2)/(r^2)* (9r^2)/(4kQ^2)\n\n(F)/(F')=(9)/(4)\n\nF'=(4F)/(9)

Hence, the correct option is (d) i.e. " 4F/9"

Final answer:

The magnitude of the force on the +4Q charge, after replacing one of the original +Q charges and moving the charges three times farther apart, is calculated to be 4F/9 using Coulomb's Law. Therefore, the correct answer is D.

Explanation:

The magnitude of the electrostatic force between two charges can be described by Coulomb's Law, which states that F = k × (q1 × q2) / r^2, where F is the force between the charges, k is Coulomb's constant, q1 and q2 are the magnitudes of the charges, and r is the distance between the centers of the two charges. Originally, two objects each with charge +Q exert a force of magnitude F on each other. After one charge is replaced with a +4Q charge and they are moved to be three times as far apart, the force on the +4Q charge can be calculated using the modified version of Coulomb's Law that takes into account the new charges and distance.

Using the original scenario as a reference, where F = k × (Q × Q) / r^2, when the charge is replaced and the distance is tripled, the new force F' = k × (Q × 4Q) / (3r)^2 = 4kQ^2 / 9r^2. By comparing F' with F, we find that F' = (4/9)F. Thus, the magnitude of the force on the +4Q charge is 4F/9.

Answer all three parts and show work.

Answers

The distance for both Parts A and B are given in the question.

A balloon drifts 140m toward the west in 45s.

The wind suddenly changes and the balloon flies 90m toward the east in the next 25s.

To find the total distance, we can just add.

140 + 90 = 230m

Best of Luck!

A propeller is modeled as five identical uniform rods extending radially from its axis. The length and mass of each rod are 0.777 m and 2.67 kg, respectively. When the propellor rotates at 573 rpm (revolutions per minute), what is its rotational kinetic energy?

Answers

The formula for the rotational kinetic energy is

KE_(rot) = (1)/(2)(number \ of\ propellers)( I)( omega)^(2)

where I is the moment of inertia. This is just mass times the square of the perpendicular distance to the axis of rotation. In other words, the radius of the propeller or this is equivalent to the length of the rod. ω is the angular velocity. We determine I and ω first.

I=m L^(2)=(2.67 \ kg) (0.777 \ m)^(2) =2.07459 \ kgm^(2)

ω = 573 rev/min * (2π rad/rev) * (1 min/60 s) = 60 rad/s

Then,

KE_(rot) =( (1)/(2) )(5)(2.07459 \ kgm^(2)) (60\ rad/s)^(2)

KE_(rot) =18,671.31 \ J

Answer:

4833J

Explanation:

Length=0.777

mass=2.67

# rods= 5

ω=573 rpm--> 573*2\pi *(1)/(60) =60rad/s

I=(1)/(3) mL^2=(1)/(3) (2.67kg)(0.777m)^2=0.537kgm^2

K=1/2(number of rods)(I)(ω)=(1)/(2) *(5)(0.537)(60)^2=4833J

I know it's very late, but hope this helps anyone else trying to find the answer.