The correct answer is:
"located in front of lens"
just took PF test and this was right answer
b. What is the distance Δymax-min between the second maximum of laser 1 and the third minimum of laser 2, on the same side of the central maximum?
Answer:
a)Δy = 81.7mm
b)Δy = 32.7cm
Explanation:
To calculate the distance between any point of the interference pattern, simply use the trigonometric ratio of the tangent:
where D is the separation between the slits and the screen where the interference pattern is observed.
a) In this case:
Δy = |y1max (λ1) − y1max (λ2)|
Δy =
Δy =
Δy =
Δy =
Δy = 81.7mm
The separation between these maxima is 81.7 mm
b)
Δy = |y₂max (λ1) − y₂max (λ2)|
Δy =
Δy =
Δy = 32.7cm
The separation between the maximum interference of the 2nd order (2nd maximum) of the pattern produced by the laser 1 and the minimum of the 2nd order (3rd minimum) of the pattern produced by the laser 2 is 32.7 cm.
We can solve the problem using the concepts of waveinterference and the formulas for maxima and minima positions (i.e., y = L*m*λ/d and y = L*(m+1/2)*λ/d respectively). The difference between the first maxima of the two patterns is 4.9/60 m and the difference between the second maximum of laser 1 and the third minimum of laser 2 is also 4.9/60 m.
The problem described deals with wave interference and can be addressed using the formulas for path difference and phasedifference.
To answer part a, we need to find the difference between the positions of the first maxima for the two lasers. The position of any maxima in an interference pattern can be found using the formula: y = L * m * λ / d, where L is the distance from the slits to the screen, m is the order of the maxima, λ is the wavelength, and d is the slit separation.
So for the first laser (λ1=d/20) the position of the first maxima would be y1 = 4.9m * 1 * (d/20) / d =4.9/20 m.
And for the second laser (λ2 = d/15) the position of the first maxima would be y2= 4.9m * 1 * (d/15) / d =4.9/15 m.
Then, the distance Δ ymax-max between the first maxima of the two patterns is y2-y1= 4.9/15 m - 4.9/20 m = 4.9/60 m.
Answering part b involves finding the positions of the second maximum of laser 1 and the third minimum of laser 2. The position of any minimum in an interference pattern can be calculated using the formula: y = L * (m+1/2) * λ / d. For the second maximum of laser 1, we have y1max2 = 4.9 m * 2 * (d/20) / d = 4.9/10 m. For the third minimum of laser 2, we have y2min3 = 4.9m * (3.5) * (d/15)/d = 4.9*7/30 m. The difference Δymax-min is y2min3-y1max2= 4.9*7/30 m - 4.9/10 m = 4.9/60 m.
#SPJ12
location of the pin?
Answer:
yes
Explanation:
it is in the body system
Answer:
it would show clearly because it is a metal piece in the body.
Given Information:
diameter = d = 15 mm
Length = L = 20 mm
Axial load = P = 300 N
Eₚ = 2.70x10⁹ Pa
vₚ = 0.4
Required Information:
Change in length = ?
Change in diameter = ?
Answer:
Change in length = 0.01257 mm
Change in diameter = -0.003772 mm
Explanation:
Stress is given by
σ = P/A
Where P is axial load and A is the area of the cross-section
A = 0.25πd²
A = 0.25π(0.015)²
A = 0.000176 m²
σ = 300/0.000176
σ = 1697792.8 Pa
The longitudinal stress is given by
εlong = σ/Eₚ
εlong = 1697792.8/2.70x10⁹
εlong = 0.0006288 mm/mm
The change in length can be found by using
δ = εlong*L
δ = 0.0006288*20
δ = 0.01257 mm
The lateral stress is given by
εlat = -vₚ*εlong
εlat = -0.4*0.0006288
εlat = -0.0002515 mm/mm
The change in diameter can be found by using
Δd = εlat*d
Δd = -0.0002515*15
Δd = -0.003772 mm
Therefore, the change in length is 0.01257 mm and the change in diameter is -0.003772 mm
Please look at the attached file
Thanks!
Hey there!
The pressure under a liquid column can be , calculated using the following formula :
P = p x g x h
P atm = 1.013 x 10⁵ Pa
g = 9.8 m/s²
h = ?
h = P / ( p x g ) =
h= ( 1.013 x 10⁵ Pa ) / ( 900 x 9.8 ) =
h = ( 1.013 x 10⁵ ) / ( 8820 ) =
h = 11.48 m ≈ 11.50 m
Hope this helps!
B. Ultraviolet radiation
C. X-rays
D. Infrared radiation
Answer:
I think D. Infrared radiation.
Answer:
infrared radition
Explanation:
valid