From the graph, it is clear that, the velocity is at a time of 1 s is highest. The velocity at 1 second corresponds to 1250 km/hr. Then it decreases with time.
The velocity - time graph shows the change in velocity with respect to time. The velocity is placed in y -axis and time is given in x - axis. The slope of the curve in velocity - time graph gives the acceleration of the object.
Similarly, the position of the object in meter after a t seconds can be determined from the velocity - time graph. It is the rate of change in velocity of the object.
From the graph, it is clear that, the curve has its peak at 1 second. After that the peak descends down. Hence, the maximum velocity of the car is at a time of 1 second at which the velocity is 1250 km/hr.
Find more on velocity - time graph :
#SPJ7
Answer:
Explanation:
vf=vi+at
vf=31 m/s
vi=0 m/s
a=g=9.8 m/s2
t=?
vf-vi=at
vf-vi/a=t
t=vf-vi/a
t=31 m/s-0/9.8
t=3.16 s
Answer:
The wavelength of the wave is 1 m
Explanation:
Given;
mass of the string, m = 20 g = 0.02 kg
length of the string, L = 3.2 m
tension on the string, T = 2.5 N
the frequency of the wave, f = 20 Hz
The velocity of the wave is given by;
where;
μ is mass per unit length = 0.02 kg / 3.2 m
μ = 6.25 x 10⁻³ kg/m
The wavelength of the wave is given by;
λ = v / f
λ = (20 m/s )/ (20 Hz)
λ = 1 m
Therefore, the wavelength of the wave is 1 m
Explanation:
It is given that,
Mass of the passenger, m = 75 kg
Acceleration of the rocket,
(a) The horizontal component of the force the seat exerts against his body is given by using Newton's second law of motion as :
F = m a
F = 3675 N
Ratio,
So, the ratio between the horizontal force and the weight is 5 : 1.
(b) The magnitude of total force the seat exerts against his body is F' i.e.
F' = 3747.7 N
The direction of force is calculated as :
Hence, this is the required solution.
The horizontal component of the force the seat exerts against the passenger's body is 3675 N. The ratio of this force to the passenger's weight is 5. The total force the seat exerts has a magnitude of 3793 N.
(a) To calculate the horizontal component of the force the seat exerts against the passenger's body, we can use Newton's second law, which states that force is equal to mass times acceleration. In this case, the mass of the passenger is 75.0 kg and the acceleration of the rocket sled is 49.0 m/s2. So the force exerted by the seat is:
Force = mass * acceleration
Force = 75.0 kg * 49.0 m/s2
Force = 3675 N
Now let's compare this force to the passenger's weight. The weight of an object is given by the formula:
Weight = mass * gravitational acceleration
Weight = 75.0 kg * 9.8 m/s2
Weight = 735 N
To find the ratio, we divide the force exerted by the seat by the weight of the passenger:
Ratio = Force / Weight
Ratio = 3675 N / 735 N
Ratio = 5
(b) The total force the seat exerts against the passenger's body has both a horizontal and vertical component. The direction of the total force is the same as the direction of the acceleration of the rocket sled. The magnitude of the total force can be found using the Pythagorean theorem:
Total Force = √(horizontal component2 + vertical component2)
Total Force = √(36752 + 7352)
Total Force = 3793 N
#SPJ11
Answer:
Explanation:
information we have:
mass:
lenght:
frequency:
time:
and from the information we have we can calculate the angular velocity . which is defined as
----------------------------
Now, to calculate the torque
We use the formula
where is the moment of inertia and is the angular acceleration
moment of inertia of a uniform rod about the end of it:
substituting known values:
for the torque we also need the acceleration which is defined as:
susbtituting known values:
and finally we substitute and into the torque equation :
To calculate the torque, we need to use the formula: Torque = Moment of Inertia * Angular Acceleration. By approximating the bat as a uniform rod and using its length and mass, we can find the moment of inertia. Then, using the given angular velocity, we can calculate the angular acceleration. Finally, we can determine the torque by multiplying the moment of inertia by the angular acceleration.
To compute the torque the player applies to one end of the bat, we need to use the formula:
Torque = Moment of Inertia * Angular Acceleration
Given that the bat is approximated as a uniform rod and we know its length and mass, we can calculate the moment of inertia. Then, using the given angular velocity, we can compute the angular acceleration. Finally, we can find the torque by multiplying the moment of inertia by the angular acceleration.
#SPJ3
The internal resistance of the battery is 0.5 ohms.
To calculate the internal resistance of the battery, we use the formula below
Formula:
Where:
Make r the subject of the equation
From the question,
Given:
Substitute these values into equation 2
Hence, The internal resistance of the battery is 0.5 ohms.
Learn more about internal resistance here: brainly.com/question/14883923
Answer:
The internal resistance is
Explanation:
From the question we are told that the resistance of
The resistance of the resistor is
The voltage is
The magnitude of the voltage fall is
Generally the current flowing through the terminal due to the voltage of the battery is mathematically represented as
substituting values
The internal resistance of the battery is mathematically represented as
substituting values