A block sliding on ground where μk = .193 experiences a 14.7 N friction force. What is the mass of the block

Answers

Answer 1
Answer:

Friction is the resistance to motion of one object moving relative to another. The friction will be 7.77

What is Friction?

According to the International Journal of Parallel, Emergent and Distributed Systems(opens in new tab), it is not treated as a fundamental force, like gravity or electromagnetism. Instead, scientists believe it is the result of the electromagnetic attraction between charged particles in two touching surfaces.

Scientists began piecing together the laws governing friction in the 1400s, according to the book Soil Mechanics(opens in new tab), but because the interactions are so complex.

F=μ*m, n=w which also means n=mg, 14.7=0.193*n, n=76.2, 76.2=m*9.8, m=7.77.

Therefore, Friction is the resistance to motion of one object moving relative to another. The friction will be 7.77.

To learn more about Friction, refer to the link:

brainly.com/question/13000653

#SPJ2

Answer 2
Answer:

Answer:

7.77

Explanation:

F=μ*m

n=w which also means n=mg

14.7=0.193*n

n=76.2

76.2=m*9.8

m=7.77


Related Questions

What is the difference between V(peak voltage) and Vrms (root-mean-square) of AC voltage source?
Exposure to what type of radiant energy is sensed by human skin as warmth? x-rays ultraviolet infrared gamma rays
Madelin fires a bullet horizontally. The rifle is 1.4 meters above the ground. The bullet travels 168 meters horizont before it hits the ground. What speed did Madelin's bullet have when it exited the rifle?
Why does an astronaut in a spacecraft orbiting Earthexperience a feeling of weightlessness?
A pitcher is in 85° of abduction, holding a 1.4 N baseball at point C, 65 cm from the joint axis at point O • The center of gravity of his arm is 25 cm from the joint axis of shoulder abduction at point O • The weight of the arm W is 0.06 of the pitcher’s weight of 100 N • Deltoids muscles are at an angle θ of 15° with respect to the humerus and insert 15 cm from the joint axis at point A • Determine the force applied by the Deltoid muscles and the joint reaction force at the shoulder joint and its orientation β

If the velocity of a pitched ball has a magnitude of 41.0 m/s and the batted ball's velocity is 50.0 m/s in the opposite direction, find the magnitude of the change in momentum of the ball and of the impulse applied to it by the bat.

Answers

The change in momentum is (91 m/s) multiplied by the mass of the ball (which you neglected to mention).
That's exactly the impulse delivered by the bat.

A charge Q = 1.96 10-8 C is surrounded by an equipotential surface with a surface area of 1.18 m2. what is the electric potential at this surface?

Answers

Answer:

V = 575.6 Volts

Explanation:

As we know that surface area of the equi-potential surface is given as

A = 1.18 m^2

so we will say

A = 4\pi r^2

1.18 = 4\pi r^2

r = 0.31 m

Now the potential due to a point charge is given as

V = (kQ)/(r)

V = ((9* 10^9)(1.96 * 10^(-8)))/(0.31)

V = 575.6 Volts

Hercules X-1 is a pulsating X-ray source. The X-rays from this source sometimes completely disappear for 6 hours every 1.7 days because the neutron star has a 1.7-day orbital period around its companion star, and it is eclipsed for ____ hours once every orbital period.

Answers

Answer:

06 Hours

Explanation:

As per the details given in the question it self, the neutron star X-1 is revolving around its companion star. The orbital period is 1.7 years which means it will complete the revolution in 1.7 years. During the movement in the orbit we will be able to detect the x-rays except for the time when it goes behind the companion star and eclipsed by it as seen from Earth.

Since the x-rays disappear completely for around 6 hours. This clearly means that eclipse period is 06 hours.

A flat (unbanked) curve on a highway that has a radius of 50 m. A car rounds the curve. The car has mass 4,907 kg. The static coefficient of friction between the curve and the car is 0.35. What is the maximum speed of the car to prevent sliding?

Answers

Answer:

maximum speed of the car to prevent sliding is 13.1m/s

Explanation:

Given data

Radius of curve r=50m

Mass of car m=4907kg

Coefficient of friction u=0.35

Limiting for R=?

Hence limiting force R=ma

R=4907*9.81

R=48137.7N

We know that the force to overcome friction is

F=uR

Hence

F=0.35*48137.7

F=16848.2N

Centripetal force along the curve is given as

Fc=mv²/r

Fc = centripetal force

m = mass

v = velocity

r = radius

To solve for velocity we have to equate both force required to overcome friction and the centripetal force

Fc=mv²/r=F=uR

mv²/r=uR

Making velocity subject of formula we have

v²=u*r*R/m

v²=(0.35*50*48137.7)/4907

v²=842409.75/

v²=171.67

v=√171.67

v=13.1m/s

The landing gear of an airplane can be idealized as the spring-mass-damper system shown in fig. 3.52. if the runway surface is described determine the values of k and c that limit the amplitude of vibration of the airplane (x) to 0.1 m. assume

Answers

The land of airplane gear of an airplane can be idealized as the spring-mass-damper system shown in fig. 3.52. if the runway surface is described

A diverging lens has a focal length of -30.0 cm. An object is placed 18.0 cm in front of this lens.(a) Calculate the image distance.

(b) Calculate the magnification.

Answers

Answer:

A) Calculate the distance