To calculate the work done by gravity on the bucket of water as it is lifted up the well, multiply the weight of the bucket by the lifting distance. The net work done on the bucket by the force applied by the farmer and gravity is the sum of the work done by both forces. The net work is represented by the equation Wnet = W1 + Wg.
To calculate how much work gravity does on the bucket filled with water as the farmer lifts it up the well, we need to multiply the force of gravity (weight) by the vertical distance the bucket is lifted. The equation for work is W = Fd, where W is the work done, F is the force, and d is the distance. In this case, the force of gravity is the weight of the bucket, which can be calculated by multiplying the mass by the acceleration due to gravity (9.8 m/s^2).
So, the work done by gravity (Wg) on the bucket is Wg = Fg * d = (m * g) * d = (3.9 kg * 9.8 m/s^2) * d = 38.22 d Joules.
To calculate the net work done on the bucket by the two forces, we can use the equation Wnet = W1 + Wg, where W1 is the work done by force F1 and Wg is the work done by gravity. Since force F1 and the displacement (lifting distance) are both vertical, the work done by F1 is given by W1 = F1 * d.
Therefore, the net work done on the bucket by forces F1 and gravity is Wnet = F1 * d + Fg * d = (57.5 N) * d + (3.9 kg * 9.8 m/s^2) * d = (57.5 N + 38.22 d) Joules.
#SPJ12
B.1985
C.1995
D.2005
The correct answer is C. 1995
Explanation:
The graph shows the changes in the harvest of Atlantic cod. In general, this graph illustrates how the peak occurred in the 1980s but then there was a sudden and sharp decline in 1995. Indeed, 1995 is the year with the lowest number of harvested cod as in this year there were approximately least than 10 thousand metric tonnes of cods. Also, this year shows the collapse of fishing stocks or that the population of this fish collapsed, which made it impossible to harvest as many fish as in previous years. According to this, the year that shows the collapse of fishing stocks is 1995.
Answer:
Billow clouds provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents.
Explanation:
Billow clouds are created in regions that are not stable in a meteorological sense. They are frequently present in places with air flows, and have marked vertical shear and weak thermal separation and inversion (colder air stays on top of warmer air). Billow clouds are formed when two air currents of varying speeds meet in the atmosphere. They create a stunning sight that looks like rolling ocean waves. Billow clouds have a very short life span of minutes but they provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents, which although may not affect us on the ground but is a concern to aircraft pilots. The turbulence due to the Billow wave is the only logical explanation for the loss of 500 m in altitude of the plane.
Answer:
av=0.333m/s, U=3.3466J
b.
Explanation:
a. let be the mass of block A, and be the mass of block B. The initial velocity of A,
-The initial momentum =Final momentum since there's no external net forces.
Relative velocity before and after collision have the same magnitude but opposite direction (for elastic collisions):
-Applying the conservation of momentum. The blocks have the same velocity after collision:
#Total Mechanical energy before and after the elastic collision is equal:
Hence, the maxumim energy stored is U=3.3466J, and the velocity=0.333m/s
b. Taking the end collision:
From a above,
We plug these values in the equation:
Answer:
The electric force on the proton is 8.2x10^-10 N
Explanation:
We use the formula to calculate the distance between two points, as follows:
r = ((x2-x1)^2 + (y2-y1)^2)^1/2, where x1 and x2 are the x coordinate, y2, y1 are the y coordinate. replacing values:
r = ((0.36-0)^2 + (0.39-0)^2)^1/2 = 0.53 nm = 5.3x10^-10 m
We will use the following expression to calculate the electrostatic force:
F = (q1*q2)/(4*pi*eo*r^2)
Here we have:
q1 = q2 = 1.6x10^-19 C, 1/4*pi*eo = 9x10^9 Nm^2C^-2
Replacing values:
F = (1.6x10^-19*1.6x10^-9*9x10^9)/((5.3x10^-10)^2) = 8.2x10^-10 N
A distance of d is covered with 53 mile/hr initially.Time taken to cover this distance t1 = d/53 hourNext distance of d is covered with x mile hours.Time taken to cover this distance t2 = d/x hours.We have average speed = 26.5 mile / hour
= Total distance traveled/ total time taken
=
Answer:
128 is the ans cuz N is also lnown as mass
Explanation:
128