Balance the following redox reaction occurring in an acidic solution. The coefficient of Mn2+(aq) is given. Enter the coefficients (integers) into the cells before each substance below the equation. ___ AsO2−(aq) + 3 Mn2+(aq) + ___ H2O(l) \rightarrow→ ___ As(s) + ___ MnO4−(aq) + ___ H+(aq)

Answers

Answer 1
Answer:

The balanced redox reaction is

5AsO⁻₂(aq) + 3Mn²⁺(aq) + 2H₂O(l) → 5As(s) + 3MnO₄−(aq) + 4H+(aq)

The unbalanced redox reaction is :

AsO₂−(aq) + 3 Mn²⁺(aq) + H₂O(l) → As(s) + MnO₄−(aq) + H⁺(aq)

The above equation can be balanced  by ensuring the atom of the elements

on the left hand side is equal to those on the right hand side.

We have 3 atoms of Mn on the left side of the equation and 1 atom on the

right hand side.This will be balanced by putting 3 in front of MnO₄− as shown

below:

AsO₂−(aq) + 3 Mn²⁺(aq) + H₂O(l) → As(s) + MnO₄−(aq) + H⁺(aq)

We have 3 atoms of O on the left hand side and 12 atoms of O on the right

hand side. This is  balanced by putting 5 in front of AsO₂− and 2 in front of

H₂O as shown below:

5AsO₂−(aq) + 3 Mn²⁺(aq) + 2H₂O(l) → As(s) + MnO₄−(aq) + H⁺(aq)

We have 4 atoms of H on the left hand side and 1 atom of H on the right

hand side.We can balance by putting 4 in front of H⁺ as shown below:

5AsO₂−(aq) + 3 Mn²⁺(aq) + 2H₂O(l) → As(s) + MnO₄−(aq) + 4H⁺(aq)

We have 5 atoms of As on the left hand side and 1 atom of As on the right

hand side. We can balance by putting 5 in front of As as shown below:

5AsO₂−(aq) + 3 Mn²⁺(aq) + 2H₂O(l) → 5As(s) + MnO₄−(aq) + 4H⁺(aq)

The equation is therefore now balanced as the number of atoms of the

element on the left hand side are equal with those on the right hand side.

Read more on brainly.com/question/25544428

Answer 2
Answer:

Answer:

_5_ AsO2−(aq) + 3 Mn2+(aq) + _2_ H2O(l) → _5_ As(s) + _3_ MnO4−(aq) + _4_ H+(aq)

Explanation:

Step 1:

The unbalanced equation:

AsO2−(aq) + 3 Mn2+(aq) + H2O(l) → As(s) + MnO4−(aq) + H+(aq)

Step 2:

Balancing the equation.

AsO2−(aq) + 3Mn2+(aq) + H2O(l) → As(s) + MnO4−(aq) + H+(aq)

The above equation can be balanced as follow:

There are 3 atoms of Mn on the left side of the equation and 1 atom on the right side. It can be balance by putting 3 in front of MnO4− as shown below:

AsO2−(aq) + 3Mn2+(aq) + H2O(l) → As(s) + 3MnO4−(aq) + H+(aq)

There are 12 atoms of O on the right side and a total of 3 atoms on the left side. It can be balance by putting 5 in front of AsO2− and 2 in front of H2O as shown below:

5AsO2−(aq) + 3Mn2+(aq) + 2H2O(l) → As(s) + 3MnO4−(aq) + H+(aq)

There are 4 atoms of H on the left side and 1 atom on the right side. It can be balance by putting 4 in front of H+ as shown below:

5AsO2−(aq) + 3Mn2+(aq) + 2H2O(l) → As(s) + 3MnO4−(aq) + 4H+(aq)

There are 5 atoms of As on the left side and 1 atom on the right side. It can be balance by putting 5 in front of As as shown below:

5AsO2−(aq) + 3Mn2+(aq) + 2H2O(l) → 5As(s) + 3MnO4−(aq) + 4H+(aq)

Now the equation is balanced


Related Questions

Identify two ions that have the following ground-state electron configurations Part B[Ar]3d^5Check all that apply.A- Fe2+B- Fe3+C- Mn2+D- V+E- Sc2+
1. What is the angular distance north or south from the earth's equator beginning at0° at the equator and ending at 90° at either pole?a. Weatherb. Altitudec. Latituded. Climate
Fe(ii) can be precipitated from a slightly basic aqueous solution by bubbling oxygen through the solution, which converts fe(ii) to insoluble fe(iii): $$4fe(oh)+(aq)+4oh−(aq)+o2​(g)+2h2​o(l) 4fe(oh)3​(s) how many grams of o2 are consumed to precipitate all of the iron in 50.0 ml of 0.0850 m fe(ii)?
What else is produced during the replacement reaction of silver nitrate and potassium sulfate? 2AgNO3 + K2SO4 Ag2SO4 + ________
You are given a glass rod that is negatively charged and a pinwheel that has a negative charge. What will happen when the glass rod is brought close to the pinwheel? Why? ​

What is the freezing point of a solution of 7.15 g MgCl2 in 100 g of water? K f for water is 1.86°C/m. What is the freezing point of a solution of 7.15 g MgCl2 in 100 g of water? K f for water is 1.86°C/m. -0.140°C -2.80°C -1.40°C -4.18°C

Answers

Answer:

THE NEW FREEZING POINT IS -4.196 °C

Explanation:

ΔTf = 1 Kf m

molarity of MgCl2:

Molar mass = (24 + 35.5 *2) g/mol

molar mass = 95 g/mol

7.15 g of MgCl2 in 100 g of water

7.15 g = 100 g

(7.15 * 100 / 1000) = 1000 g or 1 L or 1 dm3

= 0.715 g /dm3

Molarity in mol/dm3 = molarity in g/dm3 / molar mass

= 0.715 g /dm3 / 95 g/mol

m = 0.00752 mol/ dm3

So therefore:

ΔTf = i Kf m

1 = 3 (1 Mg and 2 Cl)

Kf = 1.86 °C/m

M = 0.752 moles

So we have:

ΔTf = 3 * 1.86 * 0.752

ΔTf = 4.196 °C

The new freezing point therefore will be 0 °C - 4.196 °C which is equals to - 4.196 °C

A geochemist in the field takes a 36.0 mL sample of water from a rock pool lined with crystals of a certain mineral compound X. He notes the temperature of the pool, 170 C, and caps the sample carefully. Back in the lab, the geochemist first dilutes the sample with distilled water to 500. mL. Then he filters it and evaporates all the water under vacuum. Crystals of X are left behind. The researcher washes, dries and weighs the crystals. They weigh 3.96 g.Using only the information above, can you calculate yes the solubility of X in water at 17.0 C? If you said yes, calculate it.

Answers

Answer:

solubility of X in water at 17.0 ^(0)\textrm{C} is 0.11 g/mL.

Explanation:

Yes, the solubility of X in water at 17.0 ^(0)\textrm{C} can be calculated using the information given.

Let's assume solubility of X in water at 17.0 ^(0)\textrm{C} is y g/mL

The geochemist ultimately got 3.96 g of crystals of X after evaporating the diluted solution made by diluting the 36.0 mL of stock solution.

So, solubility of X in 1 mL of water = y g

Hence, solubility of X in 36.0 mL of water = 36y g

So, 36y = 3.96

   or, y = (3.96)/(36) = 0.11

Hence solubility of X in water at 17.0 ^(0)\textrm{C} is 0.11 g/mL.

Benzene is a starting material in the synthesis of nylon fibers and polystyrene (styrofoam). Its specific heat capacity is 1.74 J/g·°C. If 16.7 kJ of energy is absorbed by a 225-g sample of benzene at 20.0°C, what is its final temperature?

Answers

Answer: The final temperature of the sample is 62.66°C

Explanation:

To calculate the amount of heat absorbed, we use the equation:

Q=mc\Delta T

where,

Q = heat absorbed = 16.7 kJ = 16700 J   (Conversion factor:  1 kJ = 1000 J)

m = Mass of the sample = 225 g

c = specific heat capacity of sample = 1.74J/g.^oC

\Delta T = change in temperature = T_2-T_1=(T_2-20.0)

Putting values in above equation, we get:

16700=225g* 1.74J/g.^oC* (T_2-20)^oC\n\nT_2=62.66^oC

Hence, the final temperature of the sample is 62.66°C

In which orbitals would the valence electrons for carbon (C) be placed? s orbital and d orbitals s orbital only p orbitals only s orbital and p orbitals

Answers

Answer:

p orbitals only

Explanation:

Carbon has an atomic number of 6 so its electron configuration will be 1s² 2s² 2p². It has two orbitals as indicated with the 2 as its period number with the outer orbital have 4 valence electrons. So carbon is in the p-orbital, period 2 and in group 4.

Final answer:

Carbon's valence electrons reside in the 2s and 2p orbitals. These orbitals hybridize during bond formation to create equivalent sp3 hybrid orbitals, as evidenced in the methane molecule. Carbon's valence electrons are not placed in d orbitals.

Explanation:

Carbon (atomic number 6) has a total of six electrons. Two of these fill the 1s orbital. The next two fill the 2s orbital, and the final two are in the 2p subshell. According to Hund's rule, the most stable configuration for an atom is one with the maximum number of unpaired electrons. Therefore, carbon has two electrons in the 2s subshell and two unpaired electrons in two separate 2p orbitals. When discussing valence electrons, the electrons in the outermost shell are the ones considered, which for carbon are the electrons in the second shell namely 2s and 2p.

The geometry of the methane molecule (CH4) illustrates that in the bonding process, the s and p orbitals hybridize to allow the formation of four equivalent bonds with hydrogen atoms. Without hybridization, we would expect three bonds at right angles (from the p orbitals) and one at a different angle (from the s orbital). Nonetheless, through orbital hybridization, all four bonds in methane are identical, which is explained by the concept of sp3 hybridized orbitals.

Therefore, the valence electrons for carbon would be placed in the s orbital and p orbitals, not in the d orbitals, because carbon does not have electrons in the d subshell in its ground state. Additionally, the s and p orbitals are the only ones involved in bonding for carbon in most of its compounds, such as methane.

Learn more about Orbital Placement of Valence Electrons here:

brainly.com/question/14104411

#SPJ3

If a sample contains 84.0 % of the R enantiomer and 16.0 % of the S enantiomer, what is the enantiomeric excess of the mixture

Answers

Answer:

enantiomeric excess = 68%

Explanation:

Enantiomeric excess is a value used to determine the purity of chiral molecules. It is possible to determine enantiomeric excess (ee) using:

ee = R - S / R + S * 100

Where R is the mass (In this case percentage) of the R enantiomer and S of the S enantiomer.

Replacing with values of the problem:

ee = 84% - 16% / 84% + 16% * 100

ee = 68%

Final answer:

The enantiomeric excess of the mixture, defined as the difference between the concentrations of the R and S enantiomers, is 68.0%.

Explanation:

The enantiomeric excess (ee) is defined as the absolute difference between the mole percentage of the major enantiomer and the minor enantiomer in a mixture. In a sample that contains 84.0 % of the R enantiomer and 16.0 % of the S enantiomer, the enantiomeric excess is calculated as follows:

  1. Calculation: The enantiomeric excess is 84.0% (R) - 16.0% (S) = 68.0%

Therefore, the enantiomeric excess of the mixture is 68.0%.

Learn more about Enantiomeric Excess here:

brainly.com/question/31993335

#SPJ3

A mixture contains N a H C O 3 together with unreactive components. A 1.68 g sample of the mixture reacts with H A to produce 0.561 g of C O 2 . What is the percent by mass of N a H C O 3 in the original mixture

Answers

There is 65% of NaHCO3 in the sample.

The equation of the reaction is;

HA + NaHCO3 -----> NaA + CO2 + H2O

Amount of CO2 formed = mass/molar mass

mass of CO2 = 0.561 g/44 g/mol = 0.013 moles

From the balanced reaction equation;

1 mole of NaHCO3 yields 1 mole of CO2

0.013 moles of Na2CO3 yields 0.013 moles of CO2

Hence, mass of NaHCO3 in the sample = 0.013 moles × 84 g/mol = 1.092 g of NaHCO3

Percentage by mass of NaHCO3 = 1.092 g/1.68 g ×100/1

= 65%

Learn more: brainly.com/question/25150590

Answer:

63.75%.

Explanation:

The first step here is to write out the reaction showing the chemical reaction between the two chemical species. Thus, we have;

HA(aq) + NaHCO3 --------------> CO2(g) + H20(l) + NaA(aq).

Therefore, the mole ratio is 1 : 1 : 1 : 1 that is go say one mole of HA reacted with one mole of NaHCO3 to give one mole of CO2 and one .ole of NaA.

Hence, the number of moles of CO2 = mass/molar mass = 0.561/44 = 0.01275 moles.

Thus, the number of moles of NaHCO3 = number of moles of CO2 = 0.01275 moles.

Therefore, we have ( 0.01275 moles × 84 g/mol) grams = 1.071 g NaHCO3 in the mixture.

Therefore, the percent by mass of N a H C O 3 in the original mixture = 1.071/1.68 × 100 = 63.75%.