0.0340 g O2
Step 1. Write the balanced chemical equation
4Fe(OH)^(+) + 4OH^(-) + O2 + 2H2O → 4Fe(OH)3
Step 2. Calculate the moles of Fe^(2+)
Moles of Fe^(2+) = 50.0 mL Fe^(2+) × [0.0850 mmol Fe^(2+)/1 mL Fe^(2+)]
= 4.250 mmol Fe^(2+)
Step 3. Calculate the moles of O2
Moles of O2 = 4.250 mmol Fe^(2+) × [1 mmol O2/4 mmol Fe^(2+)]
= 1.062 mmol O2
Step 4. Calculate the mass of O2
Mass of O2 = 1.062 mmol O2 × (32.00 mg O2/1 mmol O2) = 34.0 mg O2
= 0.0340 g O2
0.0342 grams of O2 are consumed to precipitate all of the iron in 50.0 mL of 0.0850 M Fe(II) solution.
To solve this problem, we need to first calculate the number of moles of Fe(II) in 50.0 mL of 0.0850 M Fe(II) solution.
Moles of Fe(II) = (0.0850 mol/L) * (50.0 mL) = 0.00425 mol
According to the balanced chemical equation, 4 moles of Fe(II) react with 1 mole of O2. Therefore, the number of moles of O2 required to precipitate all of the iron in 50.0 mL of 0.0850 M Fe(II) solution is:
Moles of O2 = (0.00425 mol Fe(II)) * (1 mol O2 / 4 mol Fe(II)) = 0.00106 mol O2
Now we can convert the moles of O2 to grams using the molar mass of O2 (32.00 g/mol):
Grams of O2 = (0.00106 mol O2) * (32.00 g/mol) = 0.0342 g O2
Therefore, 0.0342 grams of O2 are consumed to precipitate all of the iron in 50.0 mL of 0.0850 M Fe(II) solution.
Learn more about precipitate the iron here:
#SPJ6
periodic poperties of elements in groups
and periods
atomic radius
ionization potential
Answer:
Explanation:
In an internal combustion engine operational in automobiles, fuels are converted into mechanical energy in order to move pistons.
The basic reaction in automobile engines is combustion.
Principal chemicals consumed Chemicals produced
Petroleum Carbon dioxide
Carbon monoxide
Nitrogen oxides
Sulfur oxides
In diesel engines, production of particulate carbon is also produced.
Automobiles such as car, truck, motorbikes run on petrol or diesel. While operating these automobiles, combustion of diesel or petrol takes place which in turn requires oxygen for the process to occur.
Operation of the automobiles consumes oxygen, petrol or diesel and releases harmful chemicals like carbon dioxide (CO2), sulphur dioxide (SO2), carbon monoxide (CO) and many more. These chemicals pollutes the air and also affects the survival of living organisms by affecting the respiratory organs.
X10%
where x =
0.0960 -
X10%
where x =
The numbers in scientific notation are 291.7 = 2.917 × 10₂ and 0.0960 = 9.60 × 10⁻².
Scientific notation is commonly used in scientific and mathematical calculations, as well as when dealing with very large or very small numbers. It allows for a more compact and manageable representation of these numbers.
To write the numbers in scientific notation, we need to express them in the form of "a × 10^b," where "a" is a number between 1 and 10, and "b" is an integer.
For the number 291.7, write it in scientific notation as:
291.7 = 2.917 × 10²
For the number 0.0960, write it in scientific notation as:
0.0960 = 9.60 × 10⁻²
To learn more about scientific notation, follow the link:
#SPJ6
The best example of natural plasma is the ionosphere of the atmosphere including solar corona and lightning including auroras cloud.
the heated or hot matter that is so hot that the electrons are thrown away from the atoms and forms the ionized gas. Comprises over 99% of the visible universe.
Lightning strikes create plasma by doing a stricking of electricity. Mostly the Sun, and some stars, are in a plasma state. Certain regions of Earth's atmosphere contain some plasma created primarily by ultraviolet radiation from the Sun.
One reason plasma is not so common is because this needs high temperatures required to keep gas in the plasma state. At average temperatures on Earth, there just isn't enough energy for atoms to remain ionized.
However, at thousands to millions of degrees Kelvin, these energies are available, and plasmas dominate
Therefore, aurora clouds are natural plasma.
Learn more about natural plasma ,here
#SPJ6
Answer:
aurorus
Explanation:
The Half-Life of a radioactive element osbtime taken for half the nucleus of the atom of the element to decay
mass = 0.37 mg = 0.37 * 10⁻³ g
molar mass = 206 g/mol
number of moles = 0.37 * 10⁻³ g/206 g/mol
number of moles of Pb-206 = 1.79 * 10⁻⁶ moles
mass = 0.95 mg = 0.95 * 10⁻³ g
molar mass = 238 g/mol
number of moles = 0.95 * 10⁻³ g/238 g/mol
number of moles = 3.99 * 10⁻⁶ moles
Assuming that all the Pb-206 were formed from U-238
Initial moles of U-238 = 3.99 * 10⁻⁶ moles + 1.79 * 10⁻⁶ moles
Initial moles of U-238 = 5.78 * 10⁻⁶ moles
One mole of U-238 contains = 6.02 * 10²³ atoms
5.78 * 10⁻⁶ moles of U-238 will contain 6.02 * 10²³ * 5.78 * 10⁻⁶ atoms
Number of atoms of U-238 initially present = 3.48 * 10¹⁸ atoms
Therefore, the number of atoms of U-238 initially present is 3.48 * 10¹⁸ atoms
Learn more about Half-life at: brainly.com/question/4702752
Answer:
One molecule
Explanation
But there is three different atoms forming this one NaOH. The three atoms are Na, O and H, that is one sodium, one oxygen, and one hydrogen.