Answer:
they will repel each other
Explanation:
When these two are brought close to one another they will repel each other. This is similar to what happens with magnets, when two objects share the same polarity one object will create a repulsive force upon the second object and push it away. This repellent force is caused by an electric field from the same charged electrons in the atoms of the object. Since in this case both the glass rod and the pinwheel have a negative charge they will repel each other when they come into proximity of one another.
There is 65% of NaHCO3 in the sample.
The equation of the reaction is;
HA + NaHCO3 -----> NaA + CO2 + H2O
Amount of CO2 formed = mass/molar mass
mass of CO2 = 0.561 g/44 g/mol = 0.013 moles
From the balanced reaction equation;
1 mole of NaHCO3 yields 1 mole of CO2
0.013 moles of Na2CO3 yields 0.013 moles of CO2
Hence, mass of NaHCO3 in the sample = 0.013 moles × 84 g/mol = 1.092 g of NaHCO3
Percentage by mass of NaHCO3 = 1.092 g/1.68 g ×100/1
= 65%
Learn more: brainly.com/question/25150590
Answer:
63.75%.
Explanation:
The first step here is to write out the reaction showing the chemical reaction between the two chemical species. Thus, we have;
HA(aq) + NaHCO3 --------------> CO2(g) + H20(l) + NaA(aq).
Therefore, the mole ratio is 1 : 1 : 1 : 1 that is go say one mole of HA reacted with one mole of NaHCO3 to give one mole of CO2 and one .ole of NaA.
Hence, the number of moles of CO2 = mass/molar mass = 0.561/44 = 0.01275 moles.
Thus, the number of moles of NaHCO3 = number of moles of CO2 = 0.01275 moles.
Therefore, we have ( 0.01275 moles × 84 g/mol) grams = 1.071 g NaHCO3 in the mixture.
Therefore, the percent by mass of N a H C O 3 in the original mixture = 1.071/1.68 × 100 = 63.75%.
When a student mixes 5.00 g of NH4NO3 with 50.0 mL of water in a coffee-cup calorimeter, the temperature of the resultant solution decreases from 22.0 °C to 16.5 °C. Assume the density of water is 1.00 g/ml and the specific heat capacity of the resultant solution is 4.18 J/g·°C.
1) Calculate q for the reaction. You must show your work.
2) Calculate the number of moles of NH4NO3(s) which reacted. You must show your work.
3) Calculate ΔH for the reaction in kJ/mol. You must show your work.
Answer:
Explanation:
NH₄NO₃ = NH₄⁺ +NO₃⁻
heat released by water = msΔ T
m is mass , s is specific heat and ΔT is fall in temperature
= 50 x 4.18 x ( 22 - 16.5 ) ( mass of 50 mL is 50 g )
= 1149.5 J .
This heat will be absorbed by the reaction above .
q for the reaction = + 1149.5 J
2 )
molecular weight of NH₄NO₃ = 80
No of moles reacted = 5/80 = 1 / 16 moles.
3 )
5 g absorbs 1149.5 J
80 g absorbs 1149.5 x 16 J
= 18392 J
= 18.392 kJ.
= + 18.392 kJ
ΔH = 18.392 kJ / mol
Answer:
The answer is "Option b, c, and d".
Explanation:
In such a gene, Autosomes are also the sequence for code and transposable elements, not the series of encoding. Through the expression of genes, such fragments of its introns are split through protein complexes throughout the translation process. There has been no kenaf fiber in the genomes of prokaryotic cells.
Answer : The initial rate of the reaction at 298 K is,
Explanation :
The Arrhenius equation is written as:
Taking logarithm on both the sides, we get:
............(1)
where,
k = rate constant
Ea = activation energy
T = temperature
R = gas constant = 8.314 J/K.mole
A = pre-exponential factor
The equation (1) is of the form of, y = mx + c i.e, the equation of a straight line.
Thus, if we plot a graph of vs then the graph shows a straight line with negative slope. That means,
Slope of the line =
And,
Intercept =
As we are given that:
Slope of the line = -982.7 =
Intercept = -0.0726 =
Now we have to calculate the value of rate constant by putting the value of slope, intercept and temperature (298K) in equation 1, we get:
The value of rate constant is,
Now we have to calculate the initial rate of the reaction at 298 K.
As we know that the slow step is the rate determining step. So,
The slow step reaction is,
The expression of rate law for this reaction will be,
As we are given that:
[A] = 0.500 M
[B] = 0.0500 M
k =
Now put all the given values in the rate law expression, we get:
Therefore, the initial rate of the reaction at 298 K is,
Answer:
4.76
Explanation:
In this case, we have to start with the buffer system:
We have an acid () and a base (). Therefore we can write the henderson-hasselbach reaction:
If we want to calculate the pH, we have to calculate the pKa:
According to the problem, we have the same concentration for the acid and the base 0.1M. Therefore:
If we divide:
If we do the Log of 1:
So:
With this in mind, the pH is 4.76.
I hope it helps!