2Cl-(aq)--->Cl2(g)+2e-
Cr3+(aq)+3e- ---->Cr(s)
What is the final, balanced equation for this reaction?
1.) 2cr3+(aq)+6Cl-(aq) ------> 2Cr(s)+3Cl2(g)
2.) 2Cr3(aq)+2Cl-(aq)+6e- --->Cl2(g)+2Cr(s)
3.) Cr3+(aq)+6Cl-(aq)+3e- ---->2Cr(g)+3Cl2(g)
4.) Cr3+(aq)+2Cl-(aq)------>Cr(s)+Cl2(g)
Answer:
A
Explanation:
got it correct on edge
Buffer capacity denotes how much acid or base a buffer solution can integrate before alterations in pH becomes significant. It is crucial in maintaining physiological activities, particularly in blood pH regulation. The substance absorbing the ions is typically a weak acid/base and their conjugates.
Buffer capacity is the amount of acid or base a buffer solution can accommodate before the pH is significantly pushed outside of the buffer range. Solutions that contain sizable quantities of a weak conjugate acid-base pair are known as buffer solutions. These usually experience only slight changes in pH when small amounts of acid or base are added.
A large enough addition of these substances can exceed the buffer capacity, consuming most of the conjugate pair and leading to a drastic change in pH. In living organisms, a variety of buffering systems exist to maintain the pH of blood and other fluids within a strict range between pH 7.35 and 7.45, ensuring normal physiological functioning.
The substance that absorbs the ions is usually a weak acid, which absorbs hydroxyl ions, or a weak concentrate base, which absorbs hydrogen ions. The buffer capacity is greater in solutions that contain more of this weak acid/base and their conjugates.
#SPJ3
Buffer capacity refers to the amount of acid or base that a buffer solution can absorb before experiencing a significant shift in pH, commonly by one pH unit.
Buffer capacity is the amount of acid or base a buffer can handle before pushing the pH outside of the buffer range. Essentially, it is a measure of a buffer's resistance to pH change upon the addition of an acid or base. Buffer capacity depends on the concentrations of the weak acid and its conjugate base present in the mixture. For instance, a solution with higher concentrations of acetic acid and sodium acetate will have a greater buffer capacity than a more dilute solution of the same components. The buffer's capacity is directly proportional to its ability to absorb strong acids or bases before there's a significant change in pH, typically defined as a shift by one pH unit.
#SPJ3
Answer:
You can eat one chunk white tuna of 6 oz every 21,5 minutes
And, you can eat one chunk linght tuna of 6 oz every 5 minutes
Explanation:
The exposure to mercury may cause serious health problems, and is a threat to the development of the child in utero and early in life.
If you weight 68 kg you can eat:
68 kg * 0,1mgHg/ kg = 6,8 mg Hg per day
Thus, you can eat:
6,8 mg Hg * 1 kg tuna/ 0,6 mg Hg = 11,33 kg of chunk white tuna per day
In ounces:
11,33 kg * 35,274oz/ 1 kg = 400 oz per day
You can eat 66,7 6 ounces of chunk white tuna per day. One every 21,5 minutes
Thus, you can eat:
6,8 mg Hg * 1 kg tuna/ 0,14 mg Hg = 48,57 kg of chunk white tuna per day
In ounces:
48,57 kg * 35,274oz/ 1 kg = 1713 oz per day
You can eat 285,6 6 ounces of chunk white tuna per day. One every 5 minutes
I hope it helps!
Answer:
Explanation:
The number of molecules can be found by using the formula
N = n × L
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have
N = 4.27 × 6.02 × 10²³
We have the final answer as
Hope this helps you
Answer:
General Characteristics of Acids:
Sour taste (though you should never use this characteristic to identify an acid in the lab) Reacts with a metal to form hydrogen gas. Increases the H+ concentration in water. Donates H+ ions. Turns blue litmus indicator red.
The equilibrium pressure of H2 is 0.96 atm and the impossible solution of the quadratic equation is -1.379.
The equilibrium pressure of H2 is calculated by creating ICE table as follows;
2 N H3 ( g ) ⟷ N2( g ) + 3H2
I: 1 1 1
C: -2x x 3x
E: 1 - 2x 1 + x 1 + 3x
0.83(1 - 2x)² = (1 + x)(1 + 3x)³
0.83(1 - 4x + 4x²) = (1 + x)((1 + 3x)³)
0.83 - 3.32x + 3.32x² = (1 + x)((1 + 3x)³)
0.83 - 3.32x + 3.32x² = 1 + 10x + 36x² + 54x³ + 27x⁴
27x⁴ + 54x³ + 32.68x² + 13.32x + 0.17 = 0
x = -1.379 or - 0.013
H2 = 1 + 3(-1.379)
H2 = -3.13 atm
H2 = 1 + 3(-0.013)
H2 = 0.96 atm
Thus, the equilibrium pressure of H2 is 0.96 atm and the impossible solution of the quadratic equation is -1.379.
Learn more about equilibrium pressure here: brainly.com/question/25651917
#SPJ9