The distance the putty-block system compress the spring is 0.15 meter.
Given the following data:
To determine how far (distance) the putty-block system compress the spring:
First of all, we would solver for the initialmomentum of the putty.
Next, we would apply the law of conservation of momentum to find the final velocity of the putty-block system:
Velocity, V = 0.94 m/s
To find the compression distance, we would apply the law of conservation of energy:
x = 0.15 meter
Read more: brainly.com/question/14621920
Answer:
Explanation:
Force constant of spring K = 21 N /m
we shall find the common velocity of putty-block system from law of conservation of momentum .
Initial momentum of putty
= 5.3 x 10⁻² x 8.97
= 47.54 x 10⁻² kg m/s
If common velocity after collision be V
47.54 x 10⁻² = ( 5.3x 10⁻² + .454) x V
V = .937 m/s
If x be compression on hitting the putty
1/2 k x² = 1/2 m V²
21 x² = ( 5.3x 10⁻² + .454) x .937²
x² = .0212
x = .1456 m
14.56 cm
Answer:
* roller skates and ice skates.
* roller coaster
Explanation:
One of the best examples for this situation is when we are skating, in the initial part we must create work with a force, it compensates to move, after this the external force stops working and we continue movements with kinetic energy, if there are some ramps, we can going up, where the kinetic energy is transformed into potential energy and when going down again it is transformed into kinetic energy. This is true for both roller skates and ice skates.
Another example is the roller coaster, in this case the motor creates work to increase the energy of the car by raising it, when it reaches the top the motor is disconnected, and all the movement is carried out with changes in kinetic and potential energy. In the upper part the energy is almost all potential, it only has the kinetic energy necessary to continue the movement and in the lower part it is all kinetic; At the end of the tour, the brakes are applied that bring about the non-conservative forces that decrease the mechanical energy, transforming it into heat.
Answer:
The induced emf is 0.0888 V.
Explanation:
Given that,
Number of turns = 79
Diameter = 16.035 cm
Angle = 43
Change in magnetic field
Time = 56.691 s
We need to calculate the induced emf
Using formula of induced emf
Where, N = number of turns
A = area
B = magnetic field
Put the value into the formula
Hence, The induced emf is 0.0888 V.
Answer:
Explanation:
Given the initial temperature T_i=2° C
final temperature T_f= 32° C
The original volume of water Vo=268.8 mL= 0.2688 L
we need to calculate the change in the volume
As we know that volume expansion is given by
ΔV= change in Volume
β= expansion coefficient =
therefore,
plugging values we get
Answer:
300 clicks...
Explanation:
Output on 3 clicks = 10 dB
Increasing 10 by a factor of 100 equals 1000 dB so,
Its simple math, clicks will also increase in the same ratio and it shall take 300 clicks to increase the volume by a factor of 100.
Answer:
61.3 cm
Explanation:
Radial acceleration of the object in circular motion is given by formula
Given:
Plugging in the values in the formula
so length of his arm is 61.3 cm
Answer:u=42.29 m/s
Explanation:
Given
Horizontal distance=167 m
launch angle
Let u be the initial speed of ball
Range