Answer:
315.5 N/m
Explanation:
m = 500 g = 0.5 kg
T = 0.25 second
Total energy, E = 4 J
Let K be the spring constant.
The formula for the time period is given by
K = 315.5 N/m
Explanation:
a scientific theory is a well substantiated explanation of some aspect of the nature world, based on a body of facts that have been repeatedly confirmed through observation and experiment. search fact-supported theories are not "guesses" but reliable account of the real world .
(a) Length of the wire is 3.162 m
(b)Power delivered to the coil is 339.7 W
The electrical power is given by
P = V² / R
R = V² / P
Resistance of the heating coil, R
R = (110² / 500)
R = 12100 / 500
R = 24.2 Ω
Now the resistivity of a wire is given by
ρ= RA/L
here ρ = 1.50×10⁻⁶ Ωm
so after rearranging we get:
L = RA / ρ
Now, the radius of wirer = 0.5 / 2 mm = 0.25 mm = 2.5×10⁻⁴ m
So the cross sectional area can be calculated as follows
hence,
(b)The dependency of resistance with temperature is as follows:
R = R₀[1 + αΔT]
α = for Nichrome
So the power generated is :
P = V² / R
P = (110² / 35.62)
P = 12100/ 35.62
P = 339.70 watts
Learn more about electrical power:
Answer:
a) 3.162 m
b) 339.7 W
Explanation:
Assume ρ = 1.50*10^-6 Ωm, and
α = 4.000 10-4(°C)−1 for Nichrome
To solve this, we would use the formula
P = V² / R
So when we rearrange and make R subject of formula, we have
R = V² / P
Resistance of the heating coil, R
R = (110² / 500)
R = 12100 / 500
R = 24.2 ohms
Recall the formula for resistivity of a wire
R = ρ.L/A
Again, in rearranging and making L subject of formula, we have
L = R.A / ρ
To make it uniform, we convert our radius from mm to m.
Diameter, D = 0.5 mm
Radius of wire = 0.5 / 2 mm = 0.25 mm = 0.00025 m
We then use this radius to find our area
A = πr²
A = π * 0.00025²
A = 1.96*10^-7 m²
And finally, we solve for L
L = (24.2 * 1.96*10^-7 / 1.50*10^-6) =
L = 3.162 m
(b)
Temperature coefficient of resistance.
R₁₂₀₀ = R₂₀[1 + α(1200 - 20.0) ]
R₁₂₀₀ = R₂₀[1 + α(1180) ]
R₁₂₀₀ = 24.2[ 1 + 4.*10^-4 * 1180 ]
R₁₂₀₀ = 24.2[1 + 0.472]
R₁₂₀₀ = 24.2 * 1.472
R₁₂₀₀ = 35.62 ohms
Putting this value of R in the first formula from part a, we have
P = V² / R
P = (110² / 35.62)
P = 12100/ 35.62
P = 339.70 watts
Answer:
1 = 5.4 J
2 = 0.1979 C
3 = 5
Explanation:
Energy in a capacitor, E is
E = 1/2 * C * V²
E = 1/2 * 3000*10^-6 * 60²
E = 1/2 * 3000*10^-6 * 3600
E = 1/2 * 10.8
E = 5.4 J
E = Q²/2C = 6.53 J
E * 2C = Q²
Q² = 6.53 * 2 * 3000*10^-6
Q² = 13.06 * 3000*10^-6
Q² = 0.03918
Q = √0.03918
Q = 0.1979 C
The Capacitor, C is inversely proportional to the distance of separation, D. Thus, if D is increased by 5 to be 5D, then C would be C/5. And therefore, our energy stored in the capacitor is increased by a factor of 5.
The rotation of Uranus, like that of Venus, is retrograde and its axis of rotation is inclined almost ninety degrees above the plane of its orbit. During its orbital period of 84 years one of the poles is permanently illuminated by the Sun while the other remains in the shade. Exactly its rotation period is equivalent to 17 hours and 14 Earth minutes and its translation period is equivalent to 84 years, 7 days and 9 Earth hours.
Only a narrow band around the equator experiences a rapid cycle of day and night, but with the Sun very low on the horizon as in the polar regions of the Earth. On the other side of the orbit of Uranus, the orientation of the poles in the direction of the Sun is inverse. Each pole receives about 42 years of uninterrupted sunlight, followed by 42 years of darkness. Therefore an observer at latitude of 45 degrees in Uranus will probably experience a long winter night that is equivalent to one third of the year uranium.
Answer:
1360 m
Explanation:
Time taken for the thunder to travel the distance to the hikers = 4 seconds
Speed of the thunder = 340 m/s
Speed of light = 3×10⁸ m/s
It can be seen that the speed of light is substantially faster than the speed of sound. This is the reason why there is a delay in seeing the lightning and hearing the thunder.
Distance = Speed × Time
Hence, the lightning strike was 1360 m away from the hikers
Answer
given,
weight of solid sphere = 24.1 N
m = 24.1/g = 24.1/10 = 2.41 Kg
radius = R = 0.151 m
height of the ramp = 1.7 m
angle with horizontal = 34°
acceleration due to gravity = 10 m/s²
using energy conservation
I for sphere
v = r ω
v = 4.93 m/s
b) rotational kinetic energy
KE = 11.71 J
c) Translation kinetic energy