A 500-gram mass is attached to a spring and executes simple harmonic motion with a period of 0.25 second. If the total energy of the system is 4J, find the force constant of the spring?

Answers

Answer 1
Answer:

Answer:

315.5 N/m

Explanation:

m = 500 g = 0.5 kg

T = 0.25 second

Total energy, E = 4 J

Let K be the spring constant.

The formula for the time period is given by

T = 2\pi \sqrt{(m)/(K)}

0.25 = 2* 3.14* \sqrt{(0.5)/(K)}

0.0398=\sqrt{(0.5)/(K)}

1.585* 10^(-3)={(0.5)/(K)}

K = 315.5 N/m


Related Questions

A wheel starts at rest, and has an angular acceleration of 4 rad/s2. through what angle does it turn in 3.0 s?
If anyone can help with this, before 8 am eastern time i’ll give you 20$. Thank you
According to the U.S. Green Building Council, what percentage of the world’s energy use and greenhouse gas emissions can be attributed to buildings?
What is the density, in Mg/m3, of a substance with a density of 0.14 lb/in3? (3 pts) What is the velocity, in m/sec, of a vehicle traveling 70 mi/hr?
Which two types of energy does a book have as it falls to the floor

Which is the best description of the scientific theory

Answers

Explanation:

a scientific theory is a well substantiated explanation of some aspect of the nature world, based on a body of facts that have been repeatedly confirmed through observation and experiment. search fact-supported theories are not "guesses" but reliable account of the real world .

A 500 W heating coil designed to operate from 110 V is made of Nichrome 0.500 mm in diametera.Assuming the resistivity of the nichrome remains constant at is 20.0 degrees C value find the length of wire used.b. Now consider the variation of resistivity with temperature. What power is delivered to the coil of part (a) when it is warmed to 1200 degrees C.?

Answers

(a) Length of the wire is 3.162 m

(b)Power delivered to the coil is 339.7 W

Electrical Power:

The electrical power is given by

P = V² / R

R = V² / P

Resistance of the heating coil, R

R = (110² / 500)

R = 12100 / 500

R = 24.2 Ω

Now the resistivity of a wire is given by

ρ= RA/L

here ρ = 1.50×10⁻⁶ Ωm

so after rearranging we get:

L = RA / ρ

Now, the radius of wirer = 0.5 / 2 mm = 0.25 mm = 2.5×10⁻⁴ m

So the cross sectional area can be calculated as follows

A = \pi r^2\n\nA = \pi * (2.5*10^(-4))^2\n\nA = 1.96*10^(-7) m^2

hence,

L = (24.2 *1.96*10^(-7) / 1.50*10^(-6)) \n\nL = 3.162\; m

(b)The dependency of resistance with temperature is as follows:

R = R₀[1 +  αΔT]

α = 4*10^(-4)^\;oC^(-1) for Nichrome

R' = R [1 + \alpha (1200 - 20) ]\n\nR' = R[1 + \alpha (1180) ]\n\nR' = 24.2[ 1 + 4*10^(-4) * 1180 ]\n\nR' = 24.2[1 + 0.472]\n\nR' = 24.2 * 1.472\n\nR' = 35.62 \;\Omega

So the power generated is :

P = V² / R

P = (110² / 35.62)

P = 12100/ 35.62

P = 339.70 watts

Learn more about electrical power:

brainly.com/question/26174188

Answer:

a) 3.162 m

b) 339.7 W

Explanation:

Assume ρ = 1.50*10^-6 Ωm, and

α = 4.000 10-4(°C)−1 for Nichrome

To solve this, we would use the formula

P = V² / R

So when we rearrange and make R subject of formula, we have

R = V² / P

Resistance of the heating coil, R

R = (110² / 500)

R = 12100 / 500

R = 24.2 ohms

Recall the formula for resistivity of a wire

R = ρ.L/A

Again, in rearranging and making L subject of formula, we have

L = R.A / ρ

To make it uniform, we convert our radius from mm to m.

Diameter, D = 0.5 mm

Radius of wire = 0.5 / 2 mm = 0.25 mm = 0.00025 m

We then use this radius to find our area

A = πr²

A = π * 0.00025²

A = 1.96*10^-7 m²

And finally, we solve for L

L = (24.2 * 1.96*10^-7 / 1.50*10^-6) =

L = 3.162 m

(b)

Temperature coefficient of resistance.

R₁₂₀₀ = R₂₀[1 + α(1200 - 20.0) ]

R₁₂₀₀ = R₂₀[1 + α(1180) ]

R₁₂₀₀ = 24.2[ 1 + 4.*10^-4 * 1180 ]

R₁₂₀₀ = 24.2[1 + 0.472]

R₁₂₀₀ = 24.2 * 1.472

R₁₂₀₀ = 35.62 ohms

Putting this value of R in the first formula from part a, we have

P = V² / R

P = (110² / 35.62)

P = 12100/ 35.62

P = 339.70 watts

A capacitor consists of two closely spaced metal conductors of large area, separated by a thin insulating foil. It has an electrical capacity of 3000.0 μF and is charged to a potential difference of 60.0 V. Calculate the amount of energy stored in the capacitor. Tries 0/20 Calculate the charge on this capacitor when the electrical energy stored in the capacitor is 6.53 J. Tries 0/20 If the two plates of the capacitor have their separation increased by a factor of 5 while the charge on the plates remains constant, by what factor is the energy stored in the capacitor increased?

Answers

Answer:

1 = 5.4 J

2 = 0.1979 C

3 = 5

Explanation:

Energy in a capacitor, E is

E = 1/2 * C * V²

E = 1/2 * 3000*10^-6 * 60²

E = 1/2 * 3000*10^-6 * 3600

E = 1/2 * 10.8

E = 5.4 J

E = Q²/2C = 6.53 J

E * 2C = Q²

Q² = 6.53 * 2 * 3000*10^-6

Q² = 13.06 * 3000*10^-6

Q² = 0.03918

Q = √0.03918

Q = 0.1979 C

The Capacitor, C is inversely proportional to the distance of separation, D. Thus, if D is increased by 5 to be 5D, then C would be C/5. And therefore, our energy stored in the capacitor is increased by a factor of 5.

The planet uranus is tilted nearly on its side so that its axis or rotation is only 8 degress abway from its orbit plane. if you lived at latitude 45 degrees on uranus for what fraction of the uranian year would answer?

Answers

The rotation of Uranus, like that of Venus, is retrograde and its axis of rotation is inclined almost ninety degrees above the plane of its orbit. During its orbital period of 84 years one of the poles is permanently illuminated by the Sun while the other remains in the shade. Exactly its rotation period is equivalent to 17 hours and 14 Earth minutes and its translation period is equivalent to 84 years, 7 days and 9 Earth hours.

Only a narrow band around the equator experiences a rapid cycle of day and night, but with the Sun very low on the horizon as in the polar regions of the Earth. On the other side of the orbit of Uranus, the orientation of the poles in the direction of the Sun is inverse. Each pole receives about 42 years of uninterrupted sunlight, followed by 42 years of darkness. Therefore an observer at latitude of 45 degrees in Uranus will probably experience a long winter night that is equivalent to one third of the year uranium.

While on a hike, a pair of friends get caught in a thunderstorm. Four seconds after seeing the flash of a distant lightning strike, they hear the thunder. How far away was this lightning strike in miles? Note: sound, in air, travels at 340 m/s.

Answers

Answer:

1360 m

Explanation:

Time taken for the thunder to travel the distance to the hikers = 4 seconds

Speed of the thunder = 340 m/s

Speed of light = 3×10⁸ m/s

It can be seen that the speed of light is substantially faster than the speed of sound. This is the reason why there is a delay in seeing the lightning and hearing the thunder.

Distance = Speed × Time

\text{Distance}=340* 4\n\Rightarrow \text{Distance}=1360\ m

Hence, the lightning strike was 1360 m away from the hikers

A 24.1 N solid sphere with a radius of 0.151 m is released from rest and rolls, without slipping, 1.7 m down a ramp that is inclined at 34o above the horizon. What is the total kinetic energy of the sphere at the bottom of the ramp?What is the angular speed of the sphere at the bottom of the ramp? How many radians did the sphere rotate through as it rolled down the ramp What was the angular acceleration of the sphere as it rolled down the ramp

Answers

Answer

given,

weight of solid sphere = 24.1 N

m = 24.1/g  =  24.1/10 = 2.41 Kg

radius = R = 0.151 m

height of the ramp = 1.7 m

angle with horizontal = 34°

acceleration due to gravity = 10 m/s²

using energy conservation

(1)/(2)I\omega^2 + (1)/(2)mv^2 = mgh

I for sphere

I = (2)/(5)mr^2         v = r ω

(1)/(2)\ (2)/(5)mr^2* (v^2)/(r^2) + (1)/(2)mv^2 = mgh

(7)/(10)mv^2 = mgh

h = (0.7 v^2)/(g)

v = \sqrt{(h * g)/(0.7)}

v = \sqrt{(1.7 * 10)/(0.7)}

v = 4.93 m/s

b) rotational kinetic energy

KE=(1)/(2)I\omega^2

KE=(1)/(2)\ (2)/(5)mr^2* (v^2)/(r^2)

KE=(1)/(5)mv^2

KE=(1)/(5)* 2.41 * 4.93^2

KE = 11.71 J

c) Translation kinetic energy

KE=(1)/(2)mv^2

KE=(1)/(2)* 2.41 \time 4.93^2

KE=29.28\ J