We can calculate the force that the atmospheric pressure produces on a surface. Consider a living room that has a 4.0m×5.0m floor and a ceiling 3.0m high. What is the total force on the floor due to the air above the surface if the air pressure is 1.00 atm?

Answers

Answer 1
Answer:

Answer:

Force, F=2.02* 10^6\ N

Explanation:

It is given that,

Length of the room, l = 4 m

breadth of the room, b = 5 m

Height of the room, h = 3 m

Atmospheric pressure, P=1\ atm=101325\ Pa

We know that the force acting per unit area is called pressure exerted. Its formula is given by :

P=(F)/(A)

F=P* l* b

F=101325* 4* 5

F=2.02* 10^6\ N

So, the total force on the floor due to the air above the surface is 2.02* 10^6\ N. Hence, this is the required solution.


Related Questions

On a 30degrees day, there is an explosion. The sound is heard 3.4s after seeing the flash. How far away was the explosion
You received a shipment 20 days ago of 13 I for treatment of hyperthyroidism. What fraction of the original shipment would you still have with a half-life of 8.040 days for 31?
A fully loaded, slow-moving freight elevator has a cab with a total mass of 1200 kg, which is required to travel upward 35 m in 3.5 min, starting and ending at rest. The elevator's counterweight has a mass of only 940 kg, so the elevator motor must help pull the cab upward. What average power is required of the force the motor exerts on the cab via the cable
The radius of Earth is 6370 km in the Earth reference frame. The cosmic ray is moving at 0.880Co relative to Earth.a. In the reference frame of a cosmic ray how wide does Earth seem along the flight direction?b. In the reference frame of a cosmic ray how wide does Earth seem perpendicular to the flight direction?Express your answer with the appropriate units.
Where is information first stored in a human brain​

A train of 150 m length is going toward north direction at a speed of 10 ms–1 and a parrot is flying towards south direction parallel to the railway track with a speed of 5 ms–1. The time taken by the parrot to cross the train is equal to.?

Answers

Answer:

10ms

Explanation:

The bird must travel the length of the train (150m), with a combined speed of 15m/s this means it will take 10s to cross an accumulated 150ms.

Answer:

The time taken by the parrot to cross the train is = 10 m/s

Explanation:

given:

A train of 150 m length is going toward north direction at a speed of 10 m/s

and a parrot is flying towards south direction parallel to the railway track with a speed of 5 m/s

find;

The time taken by the parrot to cross the train

using the distance over speed relation formula t = d / v

where:

v = velocity

d = distance

t = time

v = 10 m/s + 5 m/s = 15 m/s (combine velocity)

d = 150 m

t = ?

plugin values into the formula

t =   150  

         15

t = 10 m/s

therefore,

The time taken by the parrot to cross the train is = 10 m/s

You suspect that a power supply is faulty, but you use a power supply tester to measure its voltage output and find it to be acceptable. Why is it still possible that the power supply may be faulty?

Answers

While a power supply tester can be a useful tool for quickly checking voltage output, it might not reveal all the potential issues a faulty power supply can cause.

Even if a power supply tester shows that the voltage output of a power supply is within acceptable limits, it's still possible that the power supply may be faulty. Here's why:

1. Voltage Under Load: A power supply tester might only measure the voltage output under no load or very light load conditions.

A faulty power supply might provide the correct voltage at low loads but fail to deliver stable voltage under high loads, which could lead to system instability or crashes.

2. Voltage Ripple and Noise: Power supplies are expected to provide a stable and clean output voltage.

3. Short Circuits or Overloads: A power supply tester typically doesn't simulate the behavior of a real system.

4. Intermittent Issues: Faulty power supplies can exhibit intermittent issues. The power supply might work fine during the testing but fail when subjected to extended periods of operation or specific conditions.

5. Quality of Components: A power supply tester might not assess the quality of individual components within the power supply.

6. Compatibility Issues: Some power supplies might not be fully compatible with certain computer hardware. Even if the voltage seems fine, compatibility issues can still cause problems.

Learn more about Short Circuit here:

brainly.com/question/30778363

#SPJ12

Find the intensity III of the sound waves produced by four 60-WW speakers as heard by the driver. Assume that the driver is located 1.0 mm from each of the two front speakers and 1.5 mm from each of the two rear speakers.

Answers

Given that,

Power = 60 W

Distance = 1.0 m

Distance between speakers = 1.5 m

We need to calculate the intensity

Using formula of intensity

I_(1)=(P)/(A)

I_(1)=(P)/(4\pi r^2)

Put the value into the formula

I_(1)=(60)/(4\pi*(1.0)^2)

I_(1)=4.77\ W/m^2

We need to calculate the intensity

Using formula of intensity

I_(2)=(P)/(A)

I_(2)=(P)/(4\pi r^2)

Put the value into the formula

I_(1)=(60)/(4\pi*(1.5)^2)

I_(1)=2.12\ W/m^2

We need to calculate the intensity of the sound waves produced by four speakers

Using formula for intensity

I'=(I_(1)+I_(2))*2

Put the value into the formula

I'=(4.77+2.12)*2

I'=13.78\ W/m^2

Hence, The intensity of the sound waves produced by four speakers is 13.78 W/m².

A 21 kg mountain lion carries a 3kg cub in it's mouth as it jumps from rest on the ground to the top of a 2 m talk rock. It takes 1 seconds for the mountain lion to jump and reach the top. How much power did the mountain lion exert? I need help to solve for power

Answers

Answer:

The power exerted by the mountain lion is 1,472.35 W.

Explanation:

Given;

mass of mountain, m₁ = 21 kg

mass of the cub, m₂ = 3 kg

height jumped by the mountain lion, h = 2 m

time taken for the mountain lion to jump, t = 1 s

Determine the weight of the lions on the top rock;

W = F = (m₁ + m₂)g

F = (21 + 3) x 9.8

F = (24) x 9.8

F = 235.2 N

Determine the final velocity of the mountain rock as it jumped to the top;

v² = u² + 2gh

where;

u is the initial velocity = 0

h is the height jumped = 2 m

v² = 0 + 2 x 9.8 x 2

v² = 39.2

v = √39.2

v = 6.26 m/s

The power exerted by the mountain lion is calculated as;

P = Fv

P = 235.2 x 6.26

P = 1,472.35 W

Therefore, the power exerted by the mountain lion is 1,472.35 W.

Since fusion and fission are opposite processes that both produce energy,why can we not simply run the process forward and then backwardrepeatedly and have a limitless supply of energy?A. The products of a fission reaction cannot be used for a fusionreaction, and the products of a fusion reaction cannot be used fora fission reaction.B. Fusion reactions can occur cheaply enough, but fission requiresvery high temperatures.C. Fusion produces energy from nuclei larger than iron, and fissionproduces energy from nuclei smaller than iron.D. Fission reactions can occur cheaply enough, but fusion requires very high temperatures

Answers

ANSWER:

D. Fission reactions can occur cheaply enough, but fusion requires very high temperatures

STEP-BY-STEP EXPLANATION:

One of the main reasons fusion power cannot be harnessed is that its power requirements are incredibly high. For fusion to occur, a temperature of at least 100,000,000°C is needed.

Therefore, the correct answer is D. Fission reactions can occur cheaply enough, but fusion requires very high temperatures

1. Towards the end of a 400m race, Faisal and Edward are leading and are both running at 6m/s. While Faisal is 72m from the finish line Edward is 100m from the finish line. Realising this and to beat Faisal, Edward decides to accelerate uniformly at 0.2 m/s2 until the end of the race while Faisal keeps on the same constant speed. Does Edward succeed in beating Faisal?

Answers

Answer:

  no

Explanation:

Faisal will finish the race in ...

  (72 m)/(6 m/s) = 12 s

In order to beat Faisal, Edward's average speed in those 12 seconds must exceed ...

  (100 m)/(12 s) = 8 1/3 m/s

To achieve that average speed, Edward's acceleration must be ...

  (8 1/3 m/s -6 m/s)/(12 s/2) = 7/18 m/s² ≈ 0.3889 m/s²

Accelerating at only 0.2 m/s², Edward will not beat Faisal.

_____

Additional comment

When acceleration is uniform, the average speed is reached halfway through the period of acceleration.