Ugoing o pri
7.) True or False: "Courtney is traveled 5 miles in 3 hours" is an example of
acceleration.
True
False

Answers

Answer 1
Answer: True tell me if im correct

Related Questions

Light from a sodium vapor lamp (λ-589 nm) forms an interference pattern on a screen 0.91 m from a pair of slits in a double-slit experiment. The bright fringes near the center of the pattern are 0.19 cm apart. Determine the separation between the slits. Assume the small-angle approximation is valid here.
A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. Find the acceleration and velocity of the body when the displacement is (a) 5 cm, (b) 3 cm and (c) 0 cm.​
A worker is holding a filled gas cylinder still. Which two sentences are true about the energy of the filled gas cylinder?
A ball is thrown into the air with 100 J of kinetic energy, which is transformed to gravitational potential energy at the top of its trajectory.When it returns to its original level after encountering air resistance, its kinetic energy is __________.A) more than 100 J.B) Not enough information given.C) less than 100 J.D) 100 J.
A 1300-turn coil of wire that is 2.10 cm in diameter is in a magnetic field that drops from 0.130 T to 0 T in 12.0 ms. The axis of the coil is parallel to the field.Question: What is the emf of the coil? (in V)

A 1000-kg car rolling on a smooth horizontal surface ( no friction) has speed of 20 m/s when it strikes a horizontal spring and is brought to rest in a distance of 2 m What is the spring’s stiffness constant?

Answers

Explanation:

kinetic energy was converted to potential energy in the spring.

the answer is in the above image

Which exerts more force, the Earth pulling on the moon or the moon pulling on the Earth? Explain.​

Answers

Answer: the earth

Explanation: Earth exerts a gravitational pull on the moon 80 times stronger than the moon's pull on the Earth. Over a very long time, the moon's rotations created fiction with the Earth's tugging back, until the moon's orbit and rotational locked with Earth.

and that's why the earth pulls the moon

Final answer:

The Earth pulling on the moon and the moon pulling on the Earth exert the same amount of force on each other due to Newton's third law of motion.

Explanation:

In terms of force, the Earth pulling on the Moon and the Moon pulling on the Earth exert the same amount of force on each other. This is because of Newton's third law of motion, which states that for every action, there is an equal and opposite reaction. So, while the Earth's gravitational force pulls the Moon towards it, the Moon's gravitational force also pulls the Earth towards it with an equal amount of force.

Newton's third law of motion states that for every action, there is an equal and opposite reaction. In the context of the gravitational interaction between the Earth and the Moon, the forces they exert on each other are equal in magnitude and opposite in direction.

The Earth pulls on the Moon with a gravitational force, and, according to Newton's third law, the Moon simultaneously pulls on the Earth with an equal gravitational force. These forces are sometimes referred to as "action and reaction pairs." The force that the Earth exerts on the Moon is often called the gravitational attraction of the Earth on the Moon, and vice versa.

Learn more about gravitational force here:

brainly.com/question/32609171

#SPJ2

The speed of light is 3.00×108m/s. How long does it take for light to travel from Earth to the Moon and back again? Express your answer using two significant figures.

Answers

Answer:

v = 3×10^8 m/s

s= 384,400 km= 3.84×10^8 m/s

t = ?

v = s/t = 2s/t

t = 2s/v

t = (2×3.84×10^8) ÷ 3×10^8

t = 2.56 seconds

Explanation:

Earth's moon is the brightest object in our

night sky and the closest celestial body. Its

presence and proximity play a huge role in

making life possible here on Earth. The moon's gravitational pull stabilizes Earth's wobble on its axis, leading to a stable climate.

The moon's orbit around Earth is elliptical. At perigee — its closest approach — the moon comes as close as 225,623 miles (363,104 kilometers). At apogee — the farthest away it gets — the moon is 252,088 miles (405,696

km) from Earth. On average, the distance fromEarth to the moon is about 238,855 miles (384,400 km). According to NASA , "That means 30 Earth-sized planets could fit in between Earth and the moon."

A 2.4-kg ball falling vertically hits the floor with a speed of 2.5 m/s and rebounds with a speed of 1.5 m/s. What is the magnitude of the impulse exerted on the ball by the floor

Answers

The magnitude of impulse will be "9.6 Ns".

According to the question,

Mass,

  • m = 2.4 kg

Final velocity,

  • v = 2.5 m/s

Initial velocity,

  • u = -1.5 m/s

By using Newton's 2nd law of motion, we get

Impulse, I = m(v-u)

By substituting the values, we get

                     = 2.4[2.5-(1.5)]

                     = 2.4(2.5+1.5)

                     = 2.4* 4

                     = 9.6 \ Ns

Thus the above answer is right.    

Learn more about Impulse here:

brainly.com/question/15495020

Answer:

9.6 Ns

Explanation:

Note: From newton's second law of motion,

Impulse = change in momentum

I = m(v-u).................. Equation 1

Where I = impulse, m = mass of the ball, v = final velocity, u = initial velocity.

Given: m = 2.4 kg, v = 2.5 m/s, u = -1.5 m/s (rebounds)

Substitute into equation 1

I = 2.4[2.5-(-1.5)]

I = 2.4(2.5+1.5)

I = 2.4(4)

I = 9.6 Ns

On December 26, 2004, a great earthquake occurred off the coast of Sumatra and triggered immense waves (tsunami) that killed some 200000 people. Satellites observing these waves from space measured 800 from one wave crest to the next and a period between waves of 1.0 hour.Part AWhat was the speed of these waves in m/s?Express your answer using two significant figures.=Part BWhat was the speed of these waves in km/h ?Express your answer using two significant figures.=

Answers

Answers:

a) 222.22 m/s

b) 800.00 km/h

Explanation:

The speed of a wave is given by the following equation:

v=f \lambda

Where:

v is the speed

f=(1)/(T) is the frequency, which has an inverse relation with the period T=1 h

\lambda=800 km is the wavelength

Solving with the given units:

v=(1)/(T)\lambda

v=(1)/(1 h)800 km

v=800.00 km/hThis is the speed of the wave in km/h

Transforming this speed to m/s:

v=800.00 (km)/(h) (1 h)/(3600 s) (1000 m)/(1 km)

v=222.22 m/sThis is the speed of the wave in m/s

A uniform, 4.5 kg, square, solid wooden gate 1.5 m on each side hangs vertically from a frictionless pivot at the center of its upper edge. A 1.3 kg raven flying horizontally at 4.5 m/s flies into this door at its center and bounces back at 2.5 m/s in the opposite direction. (a) What is the angular speed of the gate just after it is struck by the unfortunate raven? (b) During the collision, why is the angular momentum conserved but not the linear momentum?

Answers

Answer:

a) Angular speed(w) = 2.02rad/sec

b) 73J ( It is Inelastic Collision)

Explanation:

Given:

Mass=45kg

Length on each side = 1.5m side which is hangs vertically from a frictionless pivot at the center of its upper edge.

We need to calculate

(a) What is the angular speed and

(b) To know why the angular momentum conserved but not the linear momentum

CHECK THE ATTACHMENT FOR DETAILED EXPLATION