Explanation:
kinetic energy was converted to potential energy in the spring.
the answer is in the above image
Answer: the earth
Explanation: Earth exerts a gravitational pull on the moon 80 times stronger than the moon's pull on the Earth. Over a very long time, the moon's rotations created fiction with the Earth's tugging back, until the moon's orbit and rotational locked with Earth.
and that's why the earth pulls the moon
The Earth pulling on the moon and the moon pulling on the Earth exert the same amount of force on each other due to Newton's third law of motion.
In terms of force, the Earth pulling on the Moon and the Moon pulling on the Earth exert the same amount of force on each other. This is because of Newton's third law of motion, which states that for every action, there is an equal and opposite reaction. So, while the Earth's gravitational force pulls the Moon towards it, the Moon's gravitational force also pulls the Earth towards it with an equal amount of force.
Newton's third law of motion states that for every action, there is an equal and opposite reaction. In the context of the gravitational interaction between the Earth and the Moon, the forces they exert on each other are equal in magnitude and opposite in direction.
The Earth pulls on the Moon with a gravitational force, and, according to Newton's third law, the Moon simultaneously pulls on the Earth with an equal gravitational force. These forces are sometimes referred to as "action and reaction pairs." The force that the Earth exerts on the Moon is often called the gravitational attraction of the Earth on the Moon, and vice versa.
#SPJ2
Answer:
v = 3×10^8 m/s
s= 384,400 km= 3.84×10^8 m/s
t = ?
v = s/t = 2s/t
t = 2s/v
t = (2×3.84×10^8) ÷ 3×10^8
t = 2.56 seconds
Explanation:
Earth's moon is the brightest object in our
night sky and the closest celestial body. Its
presence and proximity play a huge role in
making life possible here on Earth. The moon's gravitational pull stabilizes Earth's wobble on its axis, leading to a stable climate.
The moon's orbit around Earth is elliptical. At perigee — its closest approach — the moon comes as close as 225,623 miles (363,104 kilometers). At apogee — the farthest away it gets — the moon is 252,088 miles (405,696
km) from Earth. On average, the distance fromEarth to the moon is about 238,855 miles (384,400 km). According to NASA , "That means 30 Earth-sized planets could fit in between Earth and the moon."
The magnitude of impulse will be "9.6 Ns".
According to the question,
Mass,
Final velocity,
Initial velocity,
By using Newton's 2nd law of motion, we get
→ Impulse,
By substituting the values, we get
Thus the above answer is right.
Learn more about Impulse here:
Answer:
9.6 Ns
Explanation:
Note: From newton's second law of motion,
Impulse = change in momentum
I = m(v-u).................. Equation 1
Where I = impulse, m = mass of the ball, v = final velocity, u = initial velocity.
Given: m = 2.4 kg, v = 2.5 m/s, u = -1.5 m/s (rebounds)
Substitute into equation 1
I = 2.4[2.5-(-1.5)]
I = 2.4(2.5+1.5)
I = 2.4(4)
I = 9.6 Ns
Answers:
a) 222.22 m/s
b) 800.00 km/h
Explanation:
The speed of a wave is given by the following equation:
Where:
is the speed
is the frequency, which has an inverse relation with the period
is the wavelength
Solving with the given units:
This is the speed of the wave in km/h
Transforming this speed to m/s:
This is the speed of the wave in m/s
Answer:
a) Angular speed(w) = 2.02rad/sec
b) 73J ( It is Inelastic Collision)
Explanation:
Given:
Mass=45kg
Length on each side = 1.5m side which is hangs vertically from a frictionless pivot at the center of its upper edge.
We need to calculate
(a) What is the angular speed and
(b) To know why the angular momentum conserved but not the linear momentum
CHECK THE ATTACHMENT FOR DETAILED EXPLATION