A horizontal force of 750 N is needed to overcome the force of static friction between a level floor and a 250-kg crate. If g-9.8 m/s, what is the coefficient of static friction? a. 3.0 b. 0.15 c. 0.28 d. 0.31

Answers

Answer 1
Answer:

Answer:

0.31

Explanation:

horizontal force, F = 750 N

mass of crate, m = 250 kg

g = 9.8 m/s^2

The friction force becomes applied force = 750 N

According to the laws of friction,

Friction force = μ x Normal reaction of the surface

here, μ be the coefficient of friction

750 = μ x m g

750 = μ x 250 x 9.8

μ = 0.31

Thus, the coefficient of static friction is 0.31.

Answer 2
Answer:

Based on the calculatins, the coefficient of static friction is equal to: D. 0.31.

Given the following data:

Force = 750 Newton.

Mass = 250 kg.

Acceleration due to gravity = 9.8 m/s^2

How to calculate the coefficient of static friction.

Mathematically, the staticfrictional force acting on an object is giving by this formula:

F_s=\mu N=\mu mg\n\n\mu =(F_s)/(mg)

Where:

  • \mu is the coefficient of static friction.
  • N is the normal force.
  • m is the mass.
  • g is the acceleration due to gravity.

Substituting the given parameters into the formula, we have;

\mu =(750)/(250 * 9.8)\n\n\mu =0.31

Read more on force here: brainly.com/question/1121817


Related Questions

An earthquake 45 km from a city produces P and S waves that travel outward at 5000 m/s and 3000 m/s, respectively. Once city residents feel the shaking of the P wave, how much time do they have before the S wave arrives in seconds?
Calculate the work done by a 50.0 N force on an object as it moves 9.00 m, if the force is oriented at an angle of 135° from the direction of travel. Explain what your answer means in terms of the object’s energy.
If you see Sagittarius high in your night sky on June 20 and today is your birthday, what is your zodiac constellation?
A bug flying horizontally at 1.7 m/s collides and sticks to the end of a uniform stick hanging vertically from its other end. After the impact, the stick swings out to a maximum angle of 7.0° from the vertical before rotating back. If the mass of the stick is 16 times that of the bug, calculate the length of the stick (in m).
Shameeka is studying for an exam she took the notable about calcium and chlorine which are known to for my comic born's which shameekas error?

A block (0.50 kg) is attached to an ideal spring with a spring constant of 80 N/m, oscillating horizontally on a frictionless surface. The total mechanical energy is 0.12 J. (a) What is the greatest extension of the spring from its equilibrium length? (b) Now the block is traveling 2.00 m/s, and brought to rest by compressing a very long spring of spring constant 800.0 N/m. How much does the spring compress?

Answers

Answer:

a) x =  5.48 10⁻² m and b)  0.05 m

Explanation:

a) For a system in oscillatory motion the mechanical energy conserves and is described by the equation

     Em = ½ k A²

Where k is the spring constant and at the amplitude of the movement

When the spring has the greatest extent, the kinetic energy is zero

     Em = U = ½ k x²

Therefore, the amplitude of the movement is the same amplitude of the spring

Let's calculate

    A = √ (2Em / k)

    A = √ (2 0.12 / 80)

   A = 0.0548 m = 5.48 10⁻² m

b) In this case the spring has kinetic energy that becomes elastic potential energy, let's calculate the mechanical energy before and after compressing the spring

Initial

      Em = K = ½ m v²

Final

     Em = Ke = ½ k x²

     ½ m v² = ½ k x²

     x = √(m/k) v

     x = 2 √(0.50 /800.0)

     x = 0.05 m

Answer:

a) The greatest extension of the spring is 0.055 m

b) The spring compress 0.05 m

Explanation:

Please look at the solution in the attached Word file

find the area of a right triangle with sides 15.0 cm, 20.0 cm, and 25.0 cm. express your answer with the correct number of significant figures

Answers

The area of this triangle can be calculated using herons formula since th three sides are given. It is expressed as:

A=sqrt( s(s-a)(s-b)(s-c))

where s is equal to a+b+c / 2

s=15 +20 +25 /2=30
A=sqrt( 30(30-15)(30-20)(30-25))
A= 150 cm^3

Suppose that the speedometer of a truck is set to read the linear speed of the truck, but uses a device that actually measures the angular speed of the tires. If larger-diameter tires are mounted on the truck, will the reading on the speedometer be correct? If not, will the reading be greater than or less than the true linear speed of the truck? Why?

Answers

The measurement will be significantly affected.

Recall that the relationship between linear velocity and angular velocity is subject to the formula

v = \omega r,

Where r indicates the radius and \omega the angular velocity.

As the radius increases, it is possible that the calibration is delayed and a higher linear velocity is indicated, that to the extent that the velocity is directly proportional to the radius of the tires.

A flat circular coil having a diameter of 25 cm is to produce a magnetic field at its center of magnitude, 1.0 mT. If the coil has 100 turns how much current must pass through the coil?

Answers

Answer:

The current pass through the coil is 6.25 A

Explanation:

Given that,

Diameter = 25 cm

Magnetic field = 1.0 mT

Number of turns = 100

We need to calculate the current

Using the formula of magnetic field

B =(\mu_(0)NI)/(2\pi r)

I=(B*2\pi r)/(\mu N)

Where, N = number of turns

r = radius

I = current

Put the value into the formula

I=(1.0*10^(-3)*2\pi*12.5*10^(-2))/(4\pi*10^(-7)100)

I=6.25\ A

Hence, The current passes through the coil is 6.25 A

The height h (in feet) of an object shot into the air from a tall building is given by the function h(t) = 650 + 80t − 16t2, where t is the time elapsed in seconds. (a) Write a formula for the velocity of the object as a function of time t.

Answers

Answer:

80 - 32t

Explanation:

The height, h, in terms of time, t, is given as:

h(t) = 650 + 80t − 16t²

Velocity is the derivative of distance with respect to time:

v(t) = dh(t)/dt = 80 - 32t

Final answer:

The velocity of the object as a function of time is given by the derivative of the height function, which is v(t) = 80 - 32t.

Explanation:

The height h(t) of an object is given by the equation h(t) = 650 + 80t − 16t2. To find the velocity v(t), we need to take the derivative of h(t) with respect to time t. Using the power rule, we get:

v(t) = dh/dt = 0 + 80 - 32t.

So, the velocity of the object as a function of time t is v(t) = 80 - 32t.

Learn more about Velocity Function here:

brainly.com/question/33157131

#SPJ11

Two kids are playing on a newly installed slide, which is 3 m long. John, whose mass is 30 kg, slides down into William (20 kg), who is sitting at the very bottom end, and whom he holds onto when he arrives. Laughing, John & William leave the slide horizontally and land in the muddy ground near the foot of the slide. (A) If John starts out 1.8 m above William, and the slide is essentially frictionless, how fast are they going when they leave the slide? (B) Thanks to the mud he acquired, John will now experience an average frictional force of 105 N as he slides down. How much slower is he going when he reaches the bottom than when friction was absent?

Answers

Answer:

v=3.564\ m.s^(-1)

\Delta v =2.16\ m.s^(-1)

Explanation:

Given:

  • mass of John, m_J=30\ kg
  • mass of William, m_W=30\ kg
  • length of slide, l=3\ m

(A)

height between John and William, h=1.8\ m

Using the equation of motion:

v_J^2=u_J^2+2 (g.sin\theta).l

where:

v_J = final velocity of John at the end of the slide

u_J = initial velocity of John at the top of the slide = 0

Now putting respective :

v_J^2=0^2+2* (9.8* (1.8)/(3))* 3

v_J=5.94\ m.s^(-1)

Now using the law of conservation of momentum at the bottom of the slide:

Sum of initial momentum of kids before & after collision must be equal.

m_J.v_J+m_w.v_w=(m_J+m_w).v

where: v = velocity with which they move together after collision

30* 5.94+0=(30+20)v

v=3.564\ m.s^(-1) is the velocity with which they leave the slide.

(B)

  • frictional force due to mud, f=105\ N

Now we find the force along the slide due to the body weight:

F=m_J.g.sin\theta

F=30* 9.8* (1.8)/(3)

F=176.4\ N

Hence the net force along the slide:

F_R=71.4\ N

Now the acceleration of John:

a_j=(F_R)/(m_J)

a_j=(71.4)/(30)

a_j=2.38\ m.s^(-2)

Now the new velocity:

v_J_n^2=u_J^2+2.(a_j).l

v_J_n^2=0^2+2* 2.38* 3

v_J_n=3.78\ m.s^(-1)

Hence the new velocity is slower by

\Delta v =(v_J-v_J_n)

\Delta v =5.94-3.78= 2.16\ m.s^(-1)