The reflected beam experienced a phase change of about 180°.
According to Snell's law, the light that incident on the glass surface will be reflected and transmitted at an angle equals to the angle of incidence.
By the observation of refractive index of the glass for the normal incidence only 4% of the light is transmitted or reflected.
The light passing through glass is not only reflected on the front surface, but also on the back. For several times the light will gets reflected back and forth. So, the total reflectance through a glass window can be calculated as
2·R / (1+R).
Thus, A light wave travelling in air is reflected by a glass barrier will undergo a phase change of 180°, while light travelling in glass will not undergo a phase change if it is reflected by a boundary with air.
Learn more about reflection,
#SPJ2
Answer:
180 degree phase change
Explanation:
Answer:
Part a)
Part b)
Part c)
Part d)
Explanation:
Part a)
When cabin is fully loaded and it is carried upwards at constant speed
then we will have
net tension force in the rope = mg
now it is partially counterbalanced by 400 kg weight
so net extra force required
now power required is given as
Part b)
When empty cabin is descending down with constant speed
so in that case the force balance is given as
now power required is
Part c)
If no counter weight is used here then for part a)
now power required is
Part d)
Now in part b) if friction force of 800 N act in opposite direction
then we have
now power is
Answer:
None of the above
It should be position is changing and acceleration is constant.
Explanation:
Since the velocity is changing, this means the object is moving, so the position must also be changing.
Acceleration is the change in velocity in time, if this change of velocity happens at a constant rate, the acceleration must be constant too.
So, for example, if the velocity were to stay the same (not changing), acceleration would be zero, because there wouldn't be a change in time on the velocity.
So in this case the answer sould be position is changing and acceleration is constant. But this isn't in the options so the correct answer is "None of the above"
In straight line motion, if velocity changes at a constant rate, then the position is changing and the acceleration is constant and non-zero. This is defined under the principles of kinematics and implies that as the velocity alters constantly, the object is in motion, hence its position is changing.
In straight line motion, if the velocity of an object is changing at a constant rate, then its position is changing and its acceleration is constant and non-zero. This condition is defined under the laws of physics, more specifically, under the study of kinematics.
The acceleration is constant because you're considering a situation where velocity is changing at a constant rate. In this case, the change in velocity is the acceleration, which is a constant and not zero. This situation is described by the kinematic equations for constant acceleration.
The position is changing because the object is moving. A change in position over time constitutes motion, and in this case, because the velocity (the rate of change of position) is changing, the object's position cannot be constant.
#SPJ3
If you do this on Earth, then the acceleration of the falling object is 9.8 m/s^2 ... NO MATTER what it's mass is.
If its mass is 10 kg, then the force pulling it down is 98.1 Newtons. Most people call that the object's "weight".
Answer:
4611.58 ft/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 32.174 ft/s²
Equation of motion
Magnitude of acceleration while stopping is 4611.58 ft/s²
Answer:
Lilly's speed is two times John's speed.
Explanation:
m = Mass
a = Acceleration
t = Time taken
u = Initial velocity
v = Final velocity
The force they apply on each other will be equal
Hence, Lilly's speed is two times John's speed.
Answer:
Lilly's speed is 2 times Johns speed
Explanation:
Answer:
no
Explanation:
Faisal will finish the race in ...
(72 m)/(6 m/s) = 12 s
In order to beat Faisal, Edward's average speed in those 12 seconds must exceed ...
(100 m)/(12 s) = 8 1/3 m/s
To achieve that average speed, Edward's acceleration must be ...
(8 1/3 m/s -6 m/s)/(12 s/2) = 7/18 m/s² ≈ 0.3889 m/s²
Accelerating at only 0.2 m/s², Edward will not beat Faisal.
_____
Additional comment
When acceleration is uniform, the average speed is reached halfway through the period of acceleration.