The net magnetic force exerted by the external magnetic field on a current-carrying wire formed into a loop in a uniform magnetic field is absolutely zero since the individual forces on each section of the loop cancel each other out.
The force exerted by a magnetic field on a current carrying wire is given by Lorentz force law, which says that the force is equal to the cross product of the current and the magnetic field. However, in this case, where the wire is formed into a loop with current flowing in a counter-clockwise direction in presence of an external magnetic field, the individual forces on each infinitesimal section of the loop cancel each other out. Therefore, the net magnetic force exerted by the external field on the entire loop is zero.
#SPJ12
The magnetic force exerted on a current-carrying wire loop by an external magnetic field can be calculated using the equation F = I * R * B.
The magnetic force exerted by the external field on the current-carrying wire loop can be determined using the equation F = I * R * B. The magnetic force is equal to the product of the current, radius, and magnetic field strength. The direction of the magnetic force can be determined using the right-hand rule, where the thumb represents the direction of the current, the fingers represent the magnetic field, and the palm represents the direction of the force.
#SPJ12
Answer:
Statement 3 is correct.
Heisenberg's uncertainty principle explains that the measurement of an observable quantity in the quantum domain inherently changes the value of that quantity
Explanation:
Classical mechanics is the study of motion of big, relatable bodies that we come in contact with in our day to day lives.
Quantum mechanics refers to this same study, but for particles on a subatomic level.
Obviously, Classical mechanics' theories and principles were first discovered and they worked for their intended uses (still work!). But when studies on particles on a sub-atomic level intensified, it became impractical to apply those theories and principles to these sub-atomic particles that displayed wave-particle duality nature properly.
Heisenberg's Uncertainty principle came in a time that explanations and justifications were needed to adapt these theories to sub-atomic particles.
The principle explains properly that it is impossible to measure the position and velocity (momentum) of a sub-atomic particle in exact terms and at the same time.
Mathematically, it is presented as
Δx.Δp ≥ ℏ
Where ℏ= adjusted Planck's constant.
ℏ= (h/2π)
And Δx and Δp are the uncertainties in measuring the position and momentum of sub-atomic particles.
The major reason for this is the wave-particle duality of sub-atomic particles. They exist as waves and particles at the same time that a complete knowledge of their position mean that a complete ignorance of their velocity and vice versa.
Taking the statements one at a time
Statement 1
Quantum Mechanics studies sub-atomic particles which are mostly always in motion. So, this is false.
Statement 2
It is impossible to calculate with accuracy both the position and momentum of particles in quantum mechanics not classical mechanics. As stated above, the reason for the uncertainty is the wave-particle duality of sub-atomic particles which the particle in classical mechanics do not exhibit obviously enough.
Statement 3
Any attempt to measure precisely the velocity of a subatomic particle, will knock it about in an unpredictable way, so that a simultaneous measurement of its position has no validity.
An essential feature of quantum mechanics is that it is generally impossible, even in principle, to measure a system without disturbing it. This is basically the uncertainty principle rephrased. This is the only true statement.
Hope this Helps!!!
Answer:
θ=π/2
Explanation:
The definition of work is W = → F ⋅ → d = q E c o s θ d W=F→⋅d→=qEcosθd. So if no work is done, the displacement must be in the direction perpendicular to the force ie c o s θ = 0 → θ = π / 2 cosθ=0→θ=π/2
A charged particle can be displaced without any external work done on it in a uniform electric field when its movement is perpendicular to the direction of the electric field.
In a uniform electric field, the electric force is the same in every direction. Therefore, if a charge were to be displaced perpendicular to the original direction of the electric field (i.e., in the y or z direction), it would not encounter any extra electric forces. This means there would be no external work being done on the charge. When a charge is moved perpendicular to an electric field, the field does not affect it, and hence, no work is done by the field.
In other words, a charge can be displaced in this field without any external work being done on it when it is moved in a direction perpendicular to the uniform electric field, either in y-axis or z-axis, assuming the electric field is constant in the x-axis direction.
#SPJ3
Answer:
The radius is
Explanation:
From the question we are told that
The current is
The magnetic field is
Generally the magnetic field produced by a current carrying conductor is mathematically represented as
=>
Here is the permeability of free space with value
=>
=>
Answer:
Explanation:
Let assume that one end of the spring is attached to the ground. The speed of the metal block when hits the relaxed vertical spring is:
The maximum compression of the spring is calculated by using the Principle of Energy Conservation:
After some algebraic handling, a second-order polynomial is formed:
The roots of the polynomial are, respectively:
The first root is the only solution that is physically reasonable. Then, the elongation of the spring is:
The maximum height that the block reaches after rebound is:
Answer:
0.81 m
Explanation:
In all moment, the total energy is constant:
Energy of sistem = kinetics energy + potencial energy = CONSTANT
So, it doesn't matter what happens when the block hit the spring, what matters are the (1) and (2) states:
(1): metal block to 0.8 m above the floor
(2): metal block above the floor, with zero velocity ( how high, is the X)
Then:
Replacing data:
HB2 ≈ 0.81 m