Explanation:
Let us assume that forces acting at point B are as follows.
= 0 ...... (1)
= 0
= 0 .......... (2)
Hence, formula for allowable normal stress of cable is as follows.
T =
= 3925 kip
From equation (1), = -3925
= -3925
= 12877.29 kip
From equation (2), -12877.29 (Cos 60) + W = 0
= 0
W = 6438.64 kip
Thus, we can conclude that greatest weight of the crate is 6438.64 kip.
To determine the greatest weight of the crate that can be supported without causing the cable to fail, calculate the normal stress on the cable using σ = F/A, where σ is the normal stress, F is the force on the cable, and A is the cross-sectional area of the cable. Then, compare the calculated normal stress to the allowable normal stress. Consider the angle phi in this calculation by using the equation F = W / sin(ϕ), where F is the force on the cable, W is the weight of the crate, and ϕ is the angle with respect to the horizontal.
To determine the greatest weight of the crate that can be supported without causing the cable to fail, we need to calculate the normal stress on the cable and compare it to the allowable normal stress. The normal stress can be calculated using the formula σ = F/A, where σ is the normal stress, F is the force on the cable, and A is the cross-sectional area of the cable. In this case, the force on the cable is equal to the weight of the crate, and the cross-sectional area of the cable can be calculated using the formula A = π*(d/2)^2, where d is the diameter of the cable.
Given that the diameter of the cable is 0.5 in and the allowable normal stress is 21 ksi, we can substitute these values into the equations and solve for the force on the cable:
Calculate the cross-sectional area of the cable: A = π*(0.5/2)^2 = π*(0.25)^2 = 0.1963 in^2
Plug the cross-sectional area and the allowable normal stress into the formula for normal stress: σallow = F/A → 21 ksi = F/0.1963 in^2
Solve for the force on the cable: F = 21 ksi * 0.1963 in^2 = 4.1183 ksi*in^2
Therefore, the greatest weight of the crate that can be supported without causing the cable to fail is equal to the force on the cable, which is 4.1183 ksi*in^2. However, it's important to note that we also need to consider the angle phi (ϕ) in this calculation. Since the cable goes up from the load to point B and then left to a pulley, the weight of the crate will create a vertical component and a horizontal component. To determine the weight of the crate that corresponds to the calculated force on the cable, we need to consider the trigonometric relationship between the force and the weight at an angle. In this case, the angle is 30 degrees, so we can use the equation F = W / sin(ϕ), where F is the force on the cable, W is the weight of the crate, and ϕ is the angle with respect to the horizontal.
Given that ϕ = 30 degrees and F = 4.1183 ksi*in^2, we can substitute these values into the equation and solve for the weight of the crate:
Plug the values into the equation: 4.1183 ksi*in^2 = W / sin(30)
Solve for the weight of the crate: W = 4.1183 ksi*in^2 * sin(30)
Therefore, the greatest weight of the crate that can be supported without causing the cable to fail and at an angle of 30 degrees is equal to the force on the cable, which is 4.1183 ksi*in^2, multiplied by the sine of 30 degrees.
For more such questions on force on the cable, click on:
#SPJ3
Answer:
560 watts
The rate of energy dissipation is 560 W
Explanation:
Rate of energy dissipation is the rate of energy consumption in the x-ray tube.
P = VI
Given;
Voltage V = 80 kV = 80,000
Current I = 7mA = 0.007 A
Substituting the given values;
P = 80,000 V × 0.007A
P = 560 Joules per second
P = 560 watts
The rate of energy dissipation is 560 W
B.) How much work is needed to move them far apart?
Answer:
Explanation:
A ) The spheres are non conducting , charge will not move on the surface so neutralization of charge by + ve and - ve charge is not possible. Charges will remain intact on them . The electric field inside them will be zero . Electric field outside shell will not be spherically symmetrical . Lines of force will emanate from the surface of positively charged shell outwardly oriented and end at negatively charged shell .
B )
distance between the centres of spherical shell
= 2 a
potential energy of charges
= k q₁ x q₂ / R
= k x - Q x Q / ( 2a )
= - k Q²/ 2a
So work needed to separate them to infinity will be equal to
= k Q²/ 2a
Answer:13.6 cm
Explanation:
Given
v(image distance)=-8.5 m
height of object=6 mm
height of image =37.5 cm
and magnification of concave mirror is given by
u=13.6 cm
so object is at a distance of 13.6 cm from mirror.
for focal length
f=-13.4 cm
thus radius of curvature of mirror is R=2f=26.8 cm
The filament of the headlight lamp should be placed about 0.85 m in front of the vertex of the mirror. The radius of curvature for the concave mirror should be approximately 0.85 m.
To determine how far in front of the vertex of the mirror the filament should be placed, we can use the mirror equation:
1/f = 1/do + 1/di
Where f is the focal length of the concave mirror, do is the object distance, and di is the image distance.
With the given information, we have:
do = ?
di = 8.50 m
Using the magnification formula:
magnification = -di/do
By substituting the values we know, we can solve for do:
37.5 cm / 6.00 mm = -8.50 m / do
Solving for do, we find that do ≈ - 0.85 m.
Since the object distance cannot be negative, we conclude that the filament of the headlight lamp should be placed about 0.85 m in front of the vertex of the mirror.
To find the radius of curvature for the concave mirror, we use the mirror formula:
1/f = 1/do + 1/di
With do = -0.85 m and di = 8.50 m, we can rearrange the formula to solve for f:
1/f = 1/-0.85 + 1/8.50
1/f ≈ -1.1765
Solving for f, we find that the focal length is approximately 0.85 m.
#SPJ3
Answer:
a) W = 25.872 J
b) - 35.28 J
c) - 9.408
Explanation:
a) The amount of work done by the force of gravity on the ball = Change in potential energy between the two vertical points = - mg (H₂ - H₁)
F = - mg (gravity is acting downwards)
F = - 0.6 × 9.8 = - 5.88 N
(H₂ - H₁) = (1.6 - 6) = - 4.4 m
W = (-5.88)(-4.4) = 25.872 J
b) Gravitational-potential energy of the ball when it was released relative to the ground = (- mg) H₁ = (- 0.6 × 9.8) × 6 = - 35.28 J
c) Gravitational-potential energy of the ball when it is caught relative to the ground = (-mg)(H₂) = -0.6 × 9.8 × 1.6 = - 9.408 J
Answer:
15.01 Liters
Explanation:
T₁ = Initial temperature = 25°C = 298.15 K
T₂ = Final temperature = 100°C = 373.15 K
V₁ = Initial volume = 12 mL
Here, pressure is constant so we apply Charles Law
∴ Final volume at 100°C is 15.01 Liters.
A) 450 meters
B) 495 meters
C) 4.09 meters
D) 498 meters
Data given:
V=45m/s
t=11s
Δx=?
Formula needed:
V=Δx/t
Solution:
Δx=v×t
Δx=45m/s×11s
Δx=495m
According to my solution B) is the most accurate