On a 30degrees day, there is an explosion. The sound is heard 3.4s after seeing the flash. How far away was the explosion

Answers

Answer 1
Answer:

Answer:

Distance = 1.2 km (Approx)

Explanation:

Given:

Temperature (T) = 30°C

Total Time taken (t) = 3.4 Sec

We know that sound increases in the air sound increase nearly 0.60 m/s for every  sound with temperature.

Speed of sound = 331 m/s

So,

V = (331 + 0.60T) m/s

V = 331+(0.60×300C) m/s

V = 349 m/s

Distance = speed × time

Distance = 349 × 3.4  

Distance = 1,186.6 m

Distance = 1.2 km (Approx)


Related Questions

The Sun delivers an average power of 1150 W/m2 to the top of the Earth’s atmosphere. The permeability of free space is 4π × 10−7 T · N/A and the speed of light is 2.99792 × 108 m/s. Find the magnitude of Em for the electromagnetic waves at the top of the atmosphere. Answer in units of N/C.
Where is the near point of an normal eye when accidentally wear a contact lens with a power of +2.0 diopters?
Information that is easily converted into numbers and is stored as a on and off signals is _____ information.
If Earth were completely blanketed with clouds and we couldn’t see the sky, could we learn about the realm beyond the clouds? What forms of radiation might penetrate the clouds and reach the ground?
Tonya picks up a leaf from the ground and holds it at arm’s length. She lets go, and the leaf falls to the ground. What force pulled the leaf to the ground?

A beam of light, which is traveling in air, is reflected by a glass surface. Does the reflected beam experience a phase change, and if so, by how much is the phase of the beam changed?

Answers

The reflected beam experienced a phase change of about 180°.

What is reflection in the glass surface?

According to Snell's law, the light that incident on the glass surface will be reflected and transmitted at an angle equals to the angle of incidence.  

By the observation of refractive index of the glass for the normal incidence only 4% of the light is transmitted or reflected.

The light passing through glass is not only reflected on the front surface, but also on the back. For several times the light will gets reflected back and forth. So, the total reflectance through a glass window can be calculated as

                                    2·R / (1+R).

Thus, A light wave travelling in air is reflected by a glass barrier will undergo a  phase change of 180°, while light travelling in glass will not undergo a phase change if it is reflected by a boundary with air.

Learn more about reflection,

brainly.com/question/15487308

#SPJ2

Answer:

180 degree phase change

Explanation:

Enunciado: Una bola se lanza verticalmente de la parte superior de un edificio con una velocidad inicial de 25 m/s. La bola impacta al suelo en la base del edificio 7 segundos después de ser lanzada. (Marque la respuesta correcta) ¿Qué altura subió la bola (medida desde la parte superior del edificio)? a) 19.6 m b) 12.75 m c) 31.88 m d) 40 m e) 20 m

Answers

La altura vertical máxima alcanzada es de 31,88 m.

Tenemos la siguiente información de la pregunta;

Velocidad inicial = 25 m/s

Velocidad final = 0 m/s (a la altura máxima)

tiempo empleado = 3,5 minutos (el tiempo empleado para subir y bajar es igual).

Usando la ecuación;

v^2 = u^2 - 2gh

Dado que v = 0

u^2 = 2gh

h = tu^2/2g

h = (25)^2/2 *9.8

h = 31,88 m

Obtenga más información sobre las ecuaciones de movimiento: brainly.com/question/8898885

The subject of this question is kinematics. The ball reached a height of 65.1 meters.

To determine the height that the ball reached, we can use the kinematic equation for vertical motion:

Final height = Initial height + Initial vertical velocity * Time + (1/2) * Acceleration * Time^2

In this case, the initial height is the height of the building, the initial vertical velocity is 25 m/s, the time is 7 seconds, and the acceleration is -9.8 m/s^2. Plugging in these values, we get:

Final height = 0 + 25 * 7 + (1/2) * (-9.8) * 7^2 = 0 + 175 - 240.1 = -65.1.

Since the ball is at ground level, the height it reached is the negative of the calculated value, so the correct answer is 65.1 m.

For more such questions on kinematics, click on:

brainly.com/question/26407594

#SPJ6

Find the force necessary to start the crate moving, given that the mass of the crate is 32 kg and the coefficient of static friction between the crate and the floor is 0.57. Express your answer using two significant figures.

Answers

Answer:

178.75 N

Explanation:

The force necessary to start moving the crate must be equal to or more than the frictional force (resistive force) acting on the crate but moving in an opposite direction to the frictional force.

So, we find the frictional force, Fr:

Fr = -μmg

Where μ = coefficient of friction

m = mass

g = acceleration due to gravity

The frictional force is negative because it acts against the direction of motion of the crate.

Fr = -0.57 * 32 * 9.8

Fr = - 178.75 N

Hence, the force necessary to move the crate must be at least equal to but opposite in direction to this frictional force.

Therefore, this force is 178.75 N

25 POINTS FIRST CORRECT GET BRAINLIEST!!!!!!!!!!!!!!!!1

Answers

Answer:

carbon isnt 12

Explanation:

A 5-kg moving at 6 m/s collided with a 1-kg ball at rest. The ball bounce off each other and the second ball moves in the same direction as the first ball at 10 m/sec. What is the velocity of the first ball after the collision?

Answers

Given :

A 5-kg moving at 6 m/s collided with a 1-kg ball at rest.

The ball bounce off each other and the second ball moves in the same direction as the first ball at 10 m/sec.

To Find :

The velocity of the first ball after the collision.

Solution :

We know, by conservation of momentum :

m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2

Putting all given values with directions ( one side +ve and other side -ve ).

5* 6 + 1* 0 =5 * v_1 + 1* 10\n\n5v_1=10-30\n\nv = -4 \ m/s

Therefore, the velocity of first ball after the collision is 4 m/s after in opposite direction.

Hence, this is the required solution.

Which of the following best represents stored potential energy?Air leaking from a flat tire
Stress built up in a rock fault
Heat given off by a forest fire
Water flowing through a hose

Answers

Answer:

B

Explanation:

stress built up on a rock fault