Answer:
The electric flux remains unchanged
Explanation:
From Gauss law the Electric flux is directly proportional to the number of electric field lines passing through a surface. The number of field lines passing through a surface become if the radius is doubled becomes 1/4th that is when radius of the Gaussian surface is doubled, but at the same time, the surface area has increased 4 times , so the electric flux remains unchanged
Answer:
Explanation:
The pressure transmitted in the hydraulic system can be found by using the formula
f is the force
a is the area
From the question we have
We have the final answer as
Hope this helps you
-Calculate the net work Wnet in J done on the bucket of water by the two forces F1 and Fg.
To calculate the work done by gravity on the bucket of water as it is lifted up the well, multiply the weight of the bucket by the lifting distance. The net work done on the bucket by the force applied by the farmer and gravity is the sum of the work done by both forces. The net work is represented by the equation Wnet = W1 + Wg.
To calculate how much work gravity does on the bucket filled with water as the farmer lifts it up the well, we need to multiply the force of gravity (weight) by the vertical distance the bucket is lifted. The equation for work is W = Fd, where W is the work done, F is the force, and d is the distance. In this case, the force of gravity is the weight of the bucket, which can be calculated by multiplying the mass by the acceleration due to gravity (9.8 m/s^2).
So, the work done by gravity (Wg) on the bucket is Wg = Fg * d = (m * g) * d = (3.9 kg * 9.8 m/s^2) * d = 38.22 d Joules.
To calculate the net work done on the bucket by the two forces, we can use the equation Wnet = W1 + Wg, where W1 is the work done by force F1 and Wg is the work done by gravity. Since force F1 and the displacement (lifting distance) are both vertical, the work done by F1 is given by W1 = F1 * d.
Therefore, the net work done on the bucket by forces F1 and gravity is Wnet = F1 * d + Fg * d = (57.5 N) * d + (3.9 kg * 9.8 m/s^2) * d = (57.5 N + 38.22 d) Joules.
#SPJ12
Swinging a tennis racket against a ball is an example of a third class lever.
OT
OF
9
Please select the best answer from the choices provided.
K
Swinging a tennis racket against a ball as a third class lever in physics.
A tennis racket swinging against a ball is indeed an example of a third class lever in physics. In a third class lever, the effort is situated between the fulcrum and the load. In this case, the effort is provided by the player's hand gripping the racket handle, the fulcrum is the wrist joint, and the load is the ball being struck by the racket.
When a player swings the racket, the force applied by the player's hand exerts an effort on the handle of the racket. This causes the racket to rotate about the wrist joint acting as the fulcrum. The ball serves as the load, receiving the force and accelerating in the opposite direction.
Answer:
The maximum height above the point of release is 11.653 m.
Explanation:
Given that,
Mass of block = 0.221 kg
Spring constant k = 5365 N/m
Distance x = 0.097 m
We need to calculate the height
Using stored energy in spring
...(I)
Using gravitational potential energy
....(II)
Using energy of conservation
Where, k = spring constant
m = mass of the block
x = distance
g = acceleration due to gravity
Put the value in the equation
Hence, The maximum height above the point of release is 11.653 m.
Answer:
315.5 N/m
Explanation:
m = 500 g = 0.5 kg
T = 0.25 second
Total energy, E = 4 J
Let K be the spring constant.
The formula for the time period is given by
K = 315.5 N/m