If the refractive index of medium A is greater than that of medium B, then total internal reflection is possible when light travels from medium B to medium A.
If the refractive index of medium A is greater than that of medium B, then total internal reflection is possible when light travels from medium B to medium A.
where Bx = 3.3 X 10-6 T, By = 3.9 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively.
1)
What is f, the frequency of this wave?
GHz
2)
What is I, the intensity of this wave?
W/m2
3)
What is Sz, the z-component of the Poynting vector at (x = 0, y = 0, z = 0) at t = 0?
W/m2
4)
What is Ex, the x-component of the electric field at (x = 0, y = 0, z = 0) at t = 0?
V/m
5)
Compare the sign and magnitude of Sz, the z-component of the Poynting vector at (x=y=z=t=0) of the wave described above to the sign and magnitude of SIIz, the z-component of the Poynting vector at (x=y=z=t=0) of another plane monochromatic electromagnetic wave propagating through vaccum described by:
B? =(BIIxi^?BIIyj^)cos(kz??t)
where BIIx = 3.9 X 10-6 T, BIIy = 3.3 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively.
SIIz < 0 and magnitude(SIIz) =/ (does not equal sign) magnitude(Sz)
SIIz < 0 and magnitude(SIIz) = magnitude(Sz)
SIIz > 0 and magnitude(SIIz) =/ (does not equal sign) magnitude(Sz)
SIIz > 0 and magnitude(SIIz) = magnitude(
The question involves computation of frequency, intensity, Poynting vector and electric field of an electromagnetic wave, and comparison between two such waves. The solutions result in approximately: 10 GHz for frequency, 3.07 x 10^-12 W/m^2 for intensity, 1.3 X 10^-19 W/m^2 for the z-component of Poynting vector, and 1.43 V/m for the electric field. Moreover, the comparison yields that SIIz is less than zero and not equal to Sz in magnitude.
The subject of your question relates to
electromagnetic waves
and their properties such as frequency, intensity, Poynting vector, and the electric field component. These concepts belong to the realm of physics, and more specifically, are topics in the study of electromagnetic theory.
To solve your questions:
#SPJ12
The frequency of the wave is 10 GHz. While we can't expressly calculate the intesity, Sz, and Ex without more information, we can note that if the signs of Bx and By are swapped in a new wave, the Poynting vector would be flipped, hence SIIz would be negative and of equal magnitude to Sz.
An electromagnetic wave propagating through vacuum is described by certain electromagnetic fields which are associated with frequency, intensity, and Poynting vector which indicates the direction of energy flow. These can be calculated using certain formulas derived from wave equations.
Frequency can be acquired from the wavelength (λ) with the formula: f = c/λ, where c is the speed of light in vacuum. Using given λ = 3 cm, we get f = 10^10 Hz or 10 GHz.
The total Intensity (I) can be calculated as the average of the sum of the intensities in the x and y direction, given by: 1/2 ε_0 c E^2, where ε_0 is the permittivity of free-space and E is the electric field amplitude. However, more information might be needed to calculate this value. Similarly, without further information, we cannot calculate the exact values of Sz and Ex.
When comparing Sz and SIIz, if the signs of Bx and By are swapped in a new wave, this would flip the direction of the Poynting vector (since it is related to E × B), hence SIIz < 0 and its magnitude would still equal to Sz because the magnitudes of Bx and By do not change.
#SPJ11
Answer:
venus - 2
earth - 3
mars - 4
mercury - 1
Answer
given,
speed of sound = 344 m/s
speed of train = 30 m/s
frequency emitted by the train = 262 Hz
Doppler's effect
f_L is the frequency of listener
f_S is the frequency of the source of the sound
v is the speed of the sound
v_L is the speed of listener.
v_S is the speed of the source
a) Speed of the passenger in another train , v = 18 m/s
another train is moving in opposite direction and approaching
v_L is positive as the listener is moving forward.
v_S is negative at the source is moving toward the listener.
b) Speed of the passenger in another train , v = 18 m/s
another train is moving in opposite direction and receding
v_L is negative as the listener is moving away from source.
v_S is positive at the source is moving away the listener.
2 A. What is the resistance of the iron?
3. A current of 0.2 A flows through an electric bell having a resistance of 65 ohms. What must be
the applied voltage in the circuit?
Answer:
(1) 0.04 ohms (2) 55 ohms (3) 13 volt
Explanation:
(1) The resistance of an electric device is 40,000 microhms.
We need to convert it into ohms.
To covert 40,000 microhms to ohms, multiply 40,000 and 10⁻⁶ as follows :
(2) Voltage used, V = 110 V
Current, I = 2 A
We need to find the resistance of the iron. Using Ohms law to find it as follows :
V = IR, where R is resistance
(3) Current, I = 0.2 A
Resistance, R = 65 ohms
We need to find the applied voltage in the circuit. Using Ohms law to find it as follows :
V=IR
V = 0.2 × 65
V = 13 volt
Answer:
1. 0.04 Ohms
2. 55 Ohms
3. 13 Volts
Explanation:
Penn Foster
Answer:
(a): should be pumped out of the room 18 L/min to keep the water level constant.
(b): should be pumped out of the room 78 L/min to reduce the water level by 4 cm/hr.
Explanation:
S= 90 m²
rate= 1.2 cm/hr = 0.012 m/hr = 0.0002 m/min
Water leak= S*rate= 90 m² * 0.0002 m/min
Water leak= 0.018 m³/min * 1000 L/m³
Water leak= 18 L/min (a) Water should be pumped out to keep the level constant.
By the rule of 3:
1.2 cm/hr ------------- 18 L/min
(4+1.2) cm/hr -------- x= 78 L/min (b) Water should be pumped out to reduce the level by 4 cm/hr.
Answer:
Explanation:
The mass balance is an application of conservation of mass, to the analysis of physical system. This is given in an equation form as
Input = Output + Accumulation
The conservation law that is used in this analysis of the system actually depends on the context of the problem. Nevertheless, they all revolve around conservation of mass. By conservation of mass, I mean that the fact that matter cannot disappear or be created spontaneously.