Answer:
b) 68,9 km/h a) picture
Explanation:
In this problem, since velocity is expressed in km/h and time in minutes, we have to convert either time to hours or velocity to km/min. It is easier to use hours.
Using this formula we pass time to hours:
Now we can plot speed vs time (image 1). The problem says that the driver uses constant speed, so all lines have to be horizontal.
Using the values of the speed we calculate the distance in each interval
Using these values and the fact that she was having lunch in the third one (therefore stayed in the same position), we plot position vs time, using initial position zero (image 2, distance is in km, not meters).
Finally, we compute the average speed with the distance over time:
To find the components of the velocity vector, you can use trigonometry. The north component is calculated using the sine function and the west component is calculated using the cosine function. After 2.20 hours, the distance traveled north and west can be found by multiplying the velocity components by the time.
To find the components of the velocity vector in the northerly and westerly directions, we can use trigonometry. The velocity vector is 835 km/h and is traveling in a direction 41.5° west of north. To find the north component, we can use the sine function: North component = velocity * sin(angle). To find the west component, we can use the cosine function: West component = velocity * cos(angle).
After 2.20 hours, we can find the distance traveled north and west by multiplying the velocity components by the time: Distance north = North component * time and Distance west = West component * time.
Let's calculate the values:
#SPJ3
the type of tire and the type of fuel
only the maximum speed
only the angle of the rear spoiler
Answer:
the type of tire and the type of fuel
Explanation:
Answer:
109.5 million years
Explanation:
The question asked us to find the time.
Remember that
Rate of velocity = distance / time, and this,
time taken = distance/rate
Due to the confusing nature of the units, we would have to be converting them to a more uniform one.
1 km is equal to 9.461*10^12 km/light-year, that's if we try to convert km to light year.
Since the speed is in km, the distance has to be in km also, and therefore, we convert ly to km:
4.5 light-years = 9.461*10^12 km/light-year) = 42.57*10^13 km
We that this value as our distance, in km.
Also,
Time = distance/speed
Time = 45.57*10^13 km / 490 km/hr = 9.3*10^11 hr
Now the next step is to convert hours to years, using the conversion factor 8766 hr/yr.
time (in years) = 9.6*10^11 hr / 8766 hr/yr) = 10.95*10^7 years
the final step is to divide the time in years by 10^6 years/million years, which gives the final answer as the trip takes 109.5 million years.
Answer:
The object's initial temperature is 333.6 K
Explanation:
We first assume that the liquid can only transfer heat to the object through convective heat transfer method.
Let T₀ = the initial temperature of the object
T = temperature of the object at anytime.
The rate of heat transfer from the liquid to the object is given as
Q = -hA (T∞ - T)
T∞ = temperature of the fluid = 400 K
A = Surface area of the object in contact with the liquid = 0.015 m²
h = Convective heat transfer coefficient is given to be = 10 W/(m²K)
The rate of heat gained by the object is given by
mC (d/dt)(T∞ - T)
m = mass of the object = ρV
ρ = density of the object = 100 kg/m³
V = volume of the object = 0.000125 m³
m = ρV = 100 × 0.000125 = 0.0125 kg
C = specific heat capacity of the object = 100 J/(kgK)
The rate of heat loss by the liquid = rate of heat gain by the object
-hA (T∞ - T) = mC (d/dt)(T∞ - T)
(d/dt)(T∞ - T) = - (dT/dt) ( Since T∞ is a constant)
- mC (dT/dt) = -hA (T∞ - T)
(dT/dt) = (hA/mC) (T∞ - T)
Let s = (hA/mC)
(dT/dt) = -s (T - T∞)
dT/(T - T∞) = -sdt
Integrating the left hand side from T₀ (the initial temperature of the object) to T and the right hand side from 0 to t
In [(T - T∞)/(T₀ - T∞)] = -st
(T - T∞)/(T₀ - T∞) = e⁻ˢᵗ
(T - T∞) = (T₀ - T∞)e⁻ˢᵗ
s = (hA/mC) = (10 × 0.015)/(0.0125×100) = 0.12
T = 380 K at t = 10 s
T₀ = ?
T∞ = 400 K
st = 0.12 × 10 = 1.2
(380 - 400) = (T₀ - 400) e⁻¹•²
(-20/0.3012) = (T₀ - 400)
(T₀ - 400) = - 66.4
T₀ = 400 - 66.4 = 333.6 K
Hope this Helps!!!
The man can climb , before the ladders starts to slip.
A - point at the top of the ladder
B - point at the bottom of the ladder
C - point where the man is positioned in the ladder
L- the length of the ladder
α - angle between ladder and ground
x - distance between C and B
The forces act on the ladder,
Horizontal reaction force (T) of the wall against the ladder
Vertical (upward) reaction force (R) of ground against the ladder.
Frictionalhorizontal ( to the left ) force (F)
Vertical( downwards) of the man,
mg = 75 Kg x 9.8 m/s² = 735 N
in static conditions,
∑Fx = T - F = 0 Since, T = F
∑Fy = mg - R = 0 Since, 735 - R = 0, R = 735
∑ Torques(b) = 0
In point B the torque produced by forces R and F is Zero
Then:
∑Torques(b) = 0
And the arm lever for each force,
mg = 735
Since, ∑Torques(b) = 0
Since,T = F
F < μR the ladder will starts slipping over the ground
μ(s) = 0.25
Therefore, the man can climb , before the ladders starts to slip. \
To know more about Torque,
Answer:
x (max) = 0,25*L*tanα
Explanation:
Letá call
A: point at the top of the ladder
B: the point at the bottom of the ladder
C: point where the man is up the ladder
L the length of the ladder
α angle between ladder and ground
"x" distance between C and B
Description
The following forces act on the ladder
Point A: horizontal (to the right) reaction (T) of the wall against the ladder
Point B : Vertical (upwards) reaction (R) of ground against the ladder
frictional horizontal ( to the left ) force (F)
Point C : Weight (vertical downwards)) of the man mg
mg = 75 Kg * 9,8 m/s² mg = 735 [N]
Then in static conditions:
∑Fx = T - F = 0 ⇒ T = F
∑Fy = mg - R = 0 ⇒ 735 - R = 0 ⇒ R = 735
∑Torques(b) = 0
Note: In point B the torque produced by forces R and F are equal to 0
Then:
∑Torques(b) = 0
And the arm lever for each force is:
mg = 735
d₁ for mg and d₂ for T
cos α = d₁/x then d₁ = x*cosα
sin α = d₂ / L then d₂ = L*sinα
Then:
∑Torques(b) = 0 ⇒ 735*x*cosα - T*L*sinα = 0
735*x*cosα = T*L*sinα
T = F then 735*x*cosα = F*L*sinα
F = (735)*x*cosα/L*sinα cos α / sinα = cotgα = 1/tanα
F = (735)*x*cotanα/L or F = (735)*x/L*tanα
When F < μ* R the ladder will stars slippering over the ground
μ(s) = 0,25 0,25*R = 735*x/L*tanα
x = 0,25*R*tanα*L/735
But R = mg = 735 then
0,25*L*tanα = x
Then x (max) = 0,25*L*tanα
Answer:
First statement:
Energy can neither be created nor destroyed.
Second statement:
Energy can be converted from one form to another.
Explanation:
According to the law of conservation of energy:energy can neither be created nor destroyed but can be converted from one form to another