A uniform, solid sphere of radius 3.75 cm and mass 4.00 kg starts with a purely translational speed of 1.75 m/s at the top of an inclined plane. The surface of the incline is 3.00 m long, and is tilted at an angle of 26.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ????2 at the bottom of the ramp.

Answers

Answer 1
Answer:

Answer:

v_2=4.53m/sv_2=4.53m/s

Explanation:

In order to solve the exercise it is necessary to apply the energy conservation equation,

The equation says the following,

mgdsin(\theta)+(1)/(2)mv^2_1=(1)/(2)mv^2_2+(1)/(2)Iw^2

Replacing the formula for I of a sphere, we have

mgdsin(\theta)+(1)/(2)mv^2_1=(1)/(2)mv^2_2+(1)/(2)(2)/(5)mr^2((v_2)/(r))^2

mgdsin(\theta)+(1)/(2)mv^2_1=(1)/(2)mv^2_2+(1)/(5)mv^2_2=(7)/(10)mv^2_2

(10)/(7)gdsin(\theta)+(5)/(7)v^2_1=v^2_2

In this way we get the expression

v_2=\sqrt{(10)/(7)gdsin(\theta)+(5)/(7)v^2_1}

We proceed to replace with the given values and obtain that

v_2=\sqrt{(10)/(7)*9.8*3sin(26))+(5)/(7)*1.75^2}

v_2=4.53m/s

Answer 2
Answer:

v_2=4.53m/sv_2=4.53m/s

The equation says the following,

mgdsin(0) + 1/2mv2/1 = 1/2mv2/2 + 1/2Iw^2  

Replacing the formula for I of a sphere,

mgdsin(0) + 1/2mv2/1 = 1/2mv2/2 + 1/2 2/5mr^2 (v2/r)^2

mgdsin(0) + 1/2mv2/1 = 1/2mv2/2 + 1/5mv2/2 = 7/10mv2/2

10/7gdsin(0) + 5/7v2/1 = v2/2

In this way, we get the expression

v2 = sqrt(10/7gdsin(0) + 5/7v2/1)

v2 = sqrt(10/7 * 9.8 * 3sin(26)) + 5/7 * 1.75^2

v2 = 4.53m/s

Further Explanation  

The ball that rolls on the plane will experience two movements at once, namely the rotation of the axis of the ball and the translational field being traversed. Therefore, objects that do rolling motion have a rotational equation and a translational equation. The amount of kinetic energy possessed by the rolling body is the amount of rotational kinetic energy and translational kinetic energy. You will here learn about the ball rolling on a plane and incline.

An object can experience translational motion or rotational motion. Translational motion is the motion of objects whose direction is straight or curved. In translational motion using the concept of Newton II's law. While the rotational motion is the motion that has a rotation of a particular shaft. Rotational motion is caused by the torque, which is the tendency of a force to rotate a rigid body against a particular pivot point.

Learn More

Object Experience  brainly.com/question/13696852

The ball that rolls  brainly.com/question/13707126

Details

Grade: College

Subject: Physics

Keyword: object, ball, roll


Related Questions

Which is the SI base unit for mass?
Do you think a baseball curves better at the top of a high mountain or down on a flat plain
wo balls have the same mass of 5.00 kg. Suppose that these two balls are attached to a rigid massless rod of length 2L, where L = 0.550 m. One is attached at one end of the rod and the other at the middle of the rod. If the rod is held by the open end and rotates in a circular motion with angular speed of 45.6 revolutions per second,
Two violin strings are tuned to the same frequency 294 H. The tension in one string is then decreased by 2.0%. What will be the beat frequency heard when the two strings are played together?
A basketball player jumps straight up for a ball. To do this, he lowers his body 0.250 m and then accelerates through this distance by forcefully straightening his legs. This player leaves the floor with a vertical velocity sufficient to carry him 0.960 m above the floor. (a) Calculate his velocity (in m/s) when he leaves the floor. 4.33 Correct: Your answer is correct. m/s (b) Calculate his acceleration (in m/s2) while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.250 m.

What is required for a sound wave to be reflected?

Answers

when sound travels on a certain wave pattern or medium once it hits the surface or surfaces of another wave or mdeium and then it bounces back that is a reflected sound wave.

Suppose that a ball is dropped from the upper observation deck of the CN Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 2 seconds.

Answers

Answer:.

Required velocity = 6.26ms^-1

Explanation:

Given,

Distance, s = 450m

Time, t = 2 sec

Step 1. We obtain the distance covered within the given time under gravitational acceleration, g = 9.8ms^-2

S = ut + (1/2)gt^2. :; u = 0

: S = (1/2)gt^2

=(1/2) (9.8)(2^2)

= 19.6m

Step 2 :

We obtain the velocity using the formula.

V^2 = u^2 + 2gs.

Where u is initial velocity, v is final/ required velocity

Again u = 0

: V^2 = 2 (9.8)(19.6)

= 39.2

: V = 6.26ms^-1

Energy is the capacity to do work, but not to produce heat

Answers

Energy and Work Energy is the capacity to do work or to produce heat. Internal energy is the sum of kinetic energy and the potential energy. ... The KE would increase because heating something causes an increase in temperature.

Final answer:

Energy is the capacity to do work but not to produce heat. In physics, energy can exist in various forms, including mechanical and thermal energy.

Explanation:

Energy is the capacity to do work and is an important concept in physics. In the context of this question, it is stated that energy is the capacity to do work but not to produce heat. This highlights the distinction between the two forms of energy. For example, mechanical energy can be used to perform work on an object and cause it to move, while thermal energy is associated with heat and not directly related to work. However, it's important to note that energy can be converted from one form to another, such as converting mechanical energy to thermal energy in a friction process.

Learn more about Energy here:

brainly.com/question/36891624

#SPJ6

25% part (c) assume that d is the distance the cheetah is away from the gazelle when it reaches full speed. Derive an expression in terms of the variables d, vcmax and vg for the time, tc, it takes the cheetah to catch the gazelle.

Answers

maximum speed of cheetah is

v_1 = v_(max)

speed of gazelle is given as

v_2 = v_(g)

Now the relative speed of Cheetah with respect to Gazelle

v_(12) = v_1 - v_2

v_(12) = v_(max) - v_g

now the relative distance between Cheetah and Gazelle is given initially as "d"

now the time taken by Cheetah to catch the Gazelle is given as

d = v_(12)* t

so by rearranging the terms we can say

t = (d)/(v_(12))

t = (d)/(v_(max) - v_g)

so above is the relation between all given variable

A 110 kg ice hockey player skates at 3.0 m/s toward a railing at the edge of the ice and then stops himself by grasping the railing with his outstretched arms. During the stopping process, his center of mass moves 30 cm toward the railing. (a) What is the change in the kinetic energy of his center of mass during this process? (b) What average force must he exert on the railing?

Answers

Answer:

(a). The change in the kinetic energy of his center of mass during this process is -495 J.

(b). The average force is 1650 N.

Explanation:

Given that,

Mass = 110 kg

Speed = 3.0 m/s

Distance = 30 cm

(a). We need to calculate the change in the kinetic energy of his center of mass during this process

Using formula of kinetic energy

\Delta K.E=K.E_(2)-K.E_(1)

\Delta K.E=(1)/(2)mv_(f)^2-(1)/(2)mv_(i)^2

Put the value into the formula

\Delta K.E=(1)/(2)*110*0^2-(1)/(2)*110*(3.0)^2

\Delta K.E=-495\ J

(b). We need to calculate the average force must he exert on the railing

Using work energy theorem

W=\Delta K.E

Fd=\Delta K.E

F=(\Delta K.E)/(d)

Put the value into the formula

F=(-495)/(30*10^(-2))

F=-1650\ N

The average force is 1650 N.

Hence, (a). The change in the kinetic energy of his center of mass during this process is -495 J.

(b). The average force is 1650 N.

Answer

given,

mass of ice hockey player = 110 Kg

initial speed of the skate = 3 m/s

final speed of the skate = 0 m/s

distance of the center of mass, m = 30 cm = 0.3 m

a) Change in kinetic energy

    \Delta KE = (1)/(2)mv_f^2 - (1)/(2)mv_i^2

    \Delta KE = (1)/(2)m(0)^2 - (1)/(2)* 110 * 3^2

    \Delta KE = - 495\ J

b) Average force must he exerted on the railing

     using work energy theorem

      W = Δ KE

      F .d  = -495

      F x 0.3  = -495

      F = -1650 N

the average force exerted on the railing is equal to 1650 N.

A missile is moving 1350 m/s at a 25.0 angle

Answers

i will answer both versions assuming what you want to know is the distance it travels up from and over the ground. and how long until it reaches space. 540 meters per second up and over. to reach space which is 100km above sea level, it would take about 5400 minutes
Other Questions