The Ojibwe people pay close attention to the seasons in order to know right
time of year for gathering certain foods.
The Ojibwe mostly hunt for fishes through the use of various techniques
such as:
They hunt for fishes at night because they are usually docile during that time
which enables them to catch them easily as against during the day when
they are much active.
Read more about Ojibwe people here brainly.com/question/24963033
Answer:C. They must know the right time of year for gathering certain foods
Explanation:
I got it correct
Answer:
a) greatest voltage = 29.25 V
b) power = 16 W
Explanation:
The total resistance R of the three resistors in series is:
a) The greatest current I is the one that will burn the resistor with lower power rating, which is 9.12 W:
The voltage is:
b) When the current is 0.54 A, the power is:
Answer:
When the jet reaches a speed of 181 m/s, its displacement is 296 m.
Explanation:
Hi there!
The equation of position and velocity of an object traveling with constant acceleration along a straight line are the following:
x = x0 + v0 · t + 1/2 · a · t²
v = v0 + a · t
Where:
x = position of the object at time t.
x0 = initial position.
v0 = initial velocity.
t = time.
a = acceleration.
v = velocity of the object at time t.
If we place the origin of the frame of reference at the point where the jet starts moving, then, x0 = 0. Since the jet starts from rest, v0 is also zero. Then the equations get reduced to the following:
x = 1/2 · a · t²
v = a · t
We know the acceleration and the final velocity of the jet. So, using the equation of velocity, we can find the time it takes the jet to reach that velocity. Then, we can calculate the position of the jet at that time. Since the initial position is zero, the final position of the jet will be equal to the displacement (because displacement = final position - initial position).
v = a · t
v/a = t
181 m/s / 55.3 m/s² = t
t = 3.27 s
The final position of the jet will be:
x = 1/2 · a · t²
x = 1/2 · 55.3 m/s² · (3.27 s)²
x = 296 m
When the jet reaches a speed of 181 m/s, its displacement is 296 m.
The displacement of the F-35 jet when it reaches a speed of 181 m/s is 16515 m.
To find displacement using constant acceleration,
we can use the following equation:
displacement = (final velocity)^2 - (initial velocity)^2 / 2 * acceleration.
In this case, the initial velocity is 0 m/s and the final velocity is 181 m/s.
The acceleration is given as 55.3 m/s^2.
Plugging in these values, we get:
displacement = (181)^2 - (0)^2 / 2 * 55.3 = 16515 m.
The displacement of the F-35 jet when it reaches a speed of 181 m/s is 16515 m.
Learn more about displacement here:
#SPJ3
Answer:43.34 m
Explanation:
Given
acceleration(a)
Initial Velocity(u)=0 m/s
After 6 s fuel runs out
Velocity after 6 s
v=u+at
After this object will start moving under gravity
height reached in first 6 s
s=36 m
After fuel run out distance traveled in upward direction is
here v=0
u=12 m/s
The motion of sand is due to the movement of conveyor belt. The horizontal distance between the end of the conveyor belt and the middle of the collecting drum is 2.044 meters.
The equation of motion is the relation between the distance, velocity, acceleration and time of a moving body.
The second equation of the motion for distance can be given as,
Here, is the initial body, is the acceleration of the body due to gravity and is the time taken by it.
Given information-
The conveyor is tilted at an angle of 18° above the horizontal.
The Sand is moved without slipping at the rate of 2 m/s.
The sand is collected in a big drum 5 m below the end of the conveyor belt.
The horizontal component of the velocity is given as,
The vertical component of the velocity is given as,
Put the value in the above equation as,
The horizontal distance between the end of the conveyor belt and the middle of the collecting drum is,
Thus, the horizontal distance between the end of the conveyor belt and the middle of the collecting drum is 2.044 meters.
Learn more about the equation of motion here;
Answer:
x = 2.044 m
Explanation:
given data
initial vertical component of velocity = Vy = 2sin18
initial horizontal component of velocity = Vx = 2cos18
distance from the ground yo = 5m
ground distance y = 0
from equation of motion
solving for t
t = 1.075 sec
for horizontal motion
x = 2cos18*1.075
x = 2.044 m
Answer:12.11 m
Explanation:
Given
Bug speed =1.7 m/s
Let mass of bug is m
mass of rod 16m
maximum angle turned by rod is 7^{\circ}[/tex]
From Energy conservation
kinetic energy of bug =Gain in potential energy of rod
L=12.11 m
impact populations?
Answer:
it represents a fundamental difference. (more info below)
Explanation:
Production is incessantly developing and expanding in socialist countries, and employment is guaranteed for the entire productive population. Consequently, the relative overpopulation problem has been eliminated. This represents the fundamental difference between socialism's demographic law and capitalism's law.
hope this helped!