Answer: The thermal energy transfer is When a fluid, such as air or a liquid, is heated and then travels away from the source, it carries the thermal energy along.
Explanation: heat transfer is called convection. hopefully this was helpful.
b. 2/pi
c. 2
d. (2)^1/2
Answer:
the answers the correct one is a 4
Explanation:
The centripetal acceleration is by
a = v² / R
angular and linear velocities are related
v = w R
let's substitute
a = w² R
for initial condition
a₀ = w₀² R
suppose the initial angular velocity is wo, suppose the angular velocity doubles
a = (2w₀)² R
a = 4 (w₀² R)
a = 4 a₀
when reviewing the answers the correct one is a
a. Find the electric potential energy of the original capacitor when it is charged. (in Joules)
b. Calculate the electric potential energy of the upgraded capacitor when it is charged. ( In Joules)
Answer:
a
b
Explanation:
From the question we are told that
The capacitance is
The voltage is
The first dielectric constant is
The second dielectric constant is
Generally the electric potential energy is mathematically represented as
=>
=>
Generally the capacitance when the capacitor's filling was changed is
=>
Generally the electric potential energy when the capacitor's filling was changed is
=>
=>
To find the critical angle, we need to consider the forces acting on the system. The weight and frictional force must be taken into account. By equating the forces and solving for the critical angle, we can determine at what angle the system just begins to move.
To determine the critical angle for the system shown, we need to consider the forces acting on the objects. The force pulling m1 downwards is its weight, which is equal to its mass multiplied by the acceleration due to gravity. The force preventing m1 from moving is the frictional force, which is equal to the coefficient of friction multiplied by the normal force. The normal force is the force exerted by the surface perpendicular to it, which is equal to the weight of m2 minus the weight of the hanging part of the rope.
At the critical angle, the force of friction is at its maximum value, which is equal to the coefficient of friction multiplied by the normal force. The force pulling m1 downwards is equal to the force of friction. By equating these forces and solving for the critical angle, we can find the answer.
#SPJ2
Answer:
Gravitational
Electrostatic
magnetic
Frictional
gravitational
electrostatic
magnetic
frictional
hope it helps
pls mark as brainliest
Answer:
a.) Speed V = 29.3 m/s
b.) K.E = 1931.6 J
Explanation: Please find the attached files for the solution
The wheel's speed at the bottom of the hill can be found through the conservation of energy equation considering both translational and rotational kinetic energy, while the total kinetic energy at the bottom of the hill is a sum of translational and rotational kinetic energy.
These two questions address the physics concepts of conservation of energy, kinetic energy, and rotational motion. To answer the first question, (a) How fast is the wheel moving when it reaches the bottom of the hill if it rolled without slipping all the way down?, we need to consider the potential energy the wheel has at the top of the hill is completely converted into kinetic energy at the bottom. This includes both translational and rotational kinetic energy. Solving for the final velocity, vf, which would be the speed of the wheel, we get vf = sqrt((2*g*h)/(1+I/(m*r^2))), where g is the acceleration due to gravity, h is the height of the hill, I is the moment of inertia of the wheel, m is the mass of the wheel, and r is the radius of the wheel.
For the second question, (b) How much total kinetic energy does it have when it reaches bottom of the hill?, we use the formula for total kinetic energy at the bottom of the hill, K= 0.5*m*v^2+0.5*I*(v/r)^2. Substituting the value of v found in the first part we find the kinetic energy which we can use the formula provided in the reference information.
#SPJ11
Answer:
0.97566 m/s
Explanation:
= Mass of cannon = 2260 kg
= Velocity of cannon
= Mass of ball = 21 kg
= Velocity of ball = 105 m/s
As the momentum of the system is conserved we have
The velocity of the cannon is 0.97566 m/s