Two point charges are placed on the x axis.The firstcharge, q1= 8.00 nC, is placed a distance 16.0 mfromthe origin along the positive x axis; the second charge,q2= 6.00 nC, is placed a distance 9.00 mfrom the originalong the negative x axis.[Give the x and y components of the electric fieldas an ordered pair. Express your answer innewtons per coulomb to three significant figures.Keep in mind that an x component that points tothe right is positive and a y component thatpoints upward is positive.]

Answers

Answer 1
Answer:

Answer:

E = (0, 0.299) N

Explanation:

Given,

  • Charge q_1\ =\ 8.0\ nC
  • Charge q_2\ =\ 6.0\ nC
  • Distance of the first charge from the origin = (16m, 0)
  • Distance of the second charge from the origin = (-9, 0)
  • Point where the electric field required = (0, 12m)

Let \theta_1\ and\ theta_2 be the angle of the electric fields by first and second charge at the point A.

\therefore sin\theta_1\ =\ (12)/(20)\n\Rightarrow \theta_1\ =\ sin^(-1)\left ((12)/(20)\ \right )\n\Rightarrow \theta_1\ =\ 36.87^o\n\n\therefore sin\theta_1\ =\ (12)/(9)\n\Rightarrow \theta_1\ =\ sin^(-1)\left ((12)/(9)\ \right )\n\Rightarrow \theta_1\ =\ 53.13^o\n

Electric field by charge q_1 at point A,

F_1\ =\ (kq_1)/(r_1^2)\n\Rightarrow F_1\ =\ (9* 10^9* 8* 10^(-9))/(20^2)\n\Rightarrow F_1\ =\ 0.18\ N/C

Electric field by the charge q_2 at point A,

F_1\ =\ (kq_1)/(r_1^2)\n\Rightarrow F_1\ =\ (9* 10^9* 6.0* 10^(-9))/(16^2)\n\Rightarrow F_1\ =\ 0.24\ N/C

Now,

Net electric field in horizontal direction at point AF_x\ =\ F_(1x)\ +\ F_(2x)\n\Rightarrow F_x\ =\ F_1cos\theta_1\ +\ F_2cos\theta_2\n\Rightarrow F_x\ =\ 0.18*( -cos36.87^o)\ +\ 0.24* cos53.13^o\n\Rightarrow F_x\ =\ -0.144\ +\ 0.144\ N/C\n\Rightarrow F_x\ =\ 0\ N/C

Net electric field in vertical direction at point A.

F_y\ =\ F_(1y)\ +\ F_(2y)\n\Rightarrow F_y\ =\ F_1sin\theta_1\ +\ F_2sin\theta_2\n\Rightarrow F_y\ =\ 0.18* sin36.87^o\ +\ 0.24* sin53.13^o\n\Rightarrow F_y\ =\ 0.180\ +\ 0.192\n\Rightarrow F_y\ =\ 0.299\ N/C

Hence, the net electric field  at point A,

F\ =\ ( 0, 0.299 )\ N/C.


Related Questions

A thin film soap bubble (n=1.35) is floating in air. If the thickness of the bubble wall is 300nm, which of the following wavelengths of visible light is strongly reflected?
A piece of soft iron is placed in a solenoid increasing the magnetic field in an arrangement that can be switched on and off. Such a device is calleda. a hysteresis loop.b. an electrosolenoid.c. a permanent magnet.d. a ferromagnet.
Which is the SI base unit for mass?
A Venturi tube may be used as the inlet to an automobile carburetor. If an inlet pipe with a diameter of 2.0 cm diameter narrows to diameter of 1.0 cm, determine the pressure drop in the constricted section for an initial airflow of 3.0 m/s in the 2-cm section? (Assume air density is 1.25 kg/m
A manufacturer claims that a carpet will not generate more than 5.8 kV of static electricity What magnitude of charge would have to be transferred between a carpet and a shoe for there to be a 5.8 kV potential distance d = 2.8 mm ? Approximate the area of a shoe as 30 cm x 8 cm. Express your answer using two significant figures.

In Europe, gasoline efficiency is measured in km/L. If your car's gas mileage is 28.0 mi/gal , how many liters of gasoline would you need to buy to complete a 142-km trip in Europe

Answers

Answer:

The volume required is  V  = 11.91 \ liters

Explanation:

From the question we are told that

  The cars mileage is  v =  28.0 mi/gal

   The  distance is  d  =  142 km

Converting the distance from km to  miles

        d =  142 *  0.6214 = 88.24 \ miles

Generally the volume of gasoline needed is mathematically represented as  

       V =  (d)/( v)

=>     V =  (88.24)/( 28.0 )

=>     V = 3.151 \ gal

Converting to  Liters

    =>   V = 3.151  *   3.78

     =>   V  = 11.91 \ liters

A rigid tank initially contains 3kg of carbon dioxide (CO2) at a pressure of 3bar.The tank is connected by a valve to a frictionless piston-cylinder assembly located vertically above, initially containing 0.5 m^3 of CO2. The piston area is 0.1 m^2. Initially the pressure of the CO2 in the piston-cylinder assembly is 2 bar. The ambient pressure and temperature are 1 bar and 290 K. Although the valveis closed, a small leak allows CO2 to flow slowly into the cylinder from the tank. Owing to heat transfer, the temperature of the CO2 throughout the tank and the piston-cylinder assembly stays constant at 290K. You can assume ideal gas behavior for CO2.Determine the following:

a. The total amount of energy transfer by work (kJ)
b. The total amount of energy transfer by heat (kJ)

Answers

Answer:

Part a: The total amount of energy transfer by the work done is 54.81 kJ.

Part b: The total amount of energy transfer by the heat is 54.81 kJ

Explanation:

Mass of Carbon Dioxide is given as m1=3 kg

Pressure is given as P1=3 bar =300 kPA

Volume is given as V1=0.5 m^3

Pressure in tank 2 is given as P2=2 bar=200 kPa

T=290 K

Now the Molecular weight of CO_2 is given as

M=44 kg/kmol

the gas constant is given as

R=\frac{\bar{R}}{M}\nR=(8.314)/(44)\nR=0.189 kJ/kg.K

Volume of the tank is given as

V=(mRT)/(P_1)\nV=(3 * 0.189 * 290)/(300 )\nV=0.5481 m^3

Final mass is given as

m_2=(P_2V)/(RT)\nm_2=(200* 0.5481)/(0.189* 290)\nm_2=2 kg

Mass of the CO2 moved to the cylinder

m=m_1-m_3\nm=3-2=1 kg

The initial mass in the cylinder is given as

m_((cyl)_1)=(P_((cyl)_1)V_1)/(RT)\nm_((cyl)_1)=(200* 0.5)/(0.189 * 290)\nm_((cyl)_1)=1.82 kg

The mass after the process is

m_((cyl)_2)=m_((cyl)_1)+m\nm_((cyl)_2)=1.82+1\nm_((cyl)_2)=2.82\n

Now the volume 2 of the cylinder is given as

V_((cyl)_2)=(m_((cyl)_2)RT)/(P_2)\nm_((cyl)_2)=(2.82* 0.189* 290)/(200)\nm_((cyl)_1)=0.774 m^3

Part a:

So the Work done is given as

W=P(V_2-V_1)\nW=200(0.774-0.5)\nW=54.81 kJ

The total amount of energy transfer by the work done is 54.81 kJ.

Part b:

The total energy transfer by heat is given as

Q=\Delta U+W\nQ=0+W\nQ=54.81 kJ

As the temperature is constant thus change in internal energy is 0.

The total amount of energy transfer by the heat is 54.81 kJ

The particle with charge q is now released and given a quick push; as a result, it acquires speed v. Eventually, this particle ends up at the center of the original square and is momentarily at rest. If the mass of this particle is m , what was its initial speed v ?.

Answers

The given situation is illustrated below. A particle is released and given a quick push. As a result, it acquires a speed v. Eventually, this particle ends up at the center of the original square and is momentarily at rest. If the mass of this particle is m, the initial speed of the particle is √((2qV/m).)


To solve the problem, we need to apply the law of conservation of energy, which states that energy can neither be created nor destroyed; it can only be transformed from one form to another.
Initial potential energy = Final kinetic energy
The initial potential energy of the particle is given by
U = qV
where V is the potential difference between the corner and the center of the square.
At the center of the square, the potential energy is zero.
The final kinetic energy of the particle is given by
K = (1/2) mv^2
where m is the mass of the particle and v is its final velocity.
Since the particle is momentarily at rest at the center of the square, its final kinetic energy is zero.
Therefore, we have
qV = (1/2) mv^2
Solving for v, we get
v = √((2qV/m).)

for such more question on speed

brainly.com/question/13943409

#SPJ11

A boy and a girl are pulling a heavy crate at the same time with 7 units of firce each. What is the net force acts on the ibject? Is the object balanced or unbalanced?

Answers

Answer:

Net force= 14 units

The object is unbalanced

Explanation:

The net force refers to the sum of all forces applied to an object. However, the direction of force applied determine the net force. In this question, a boy and girl is pulling a heavy crate at the same time.

This means that the force is in the same direction, hence, the net force will be:

F(N) = 7 + 7 = 14 unit

However, since the pull is occuring at the same direction. This means that the object has a net force, therefore, will move in a particular direction. This means that the OBJECT IS UNBALANCED

Two particles, one with charge −7.97×10−6 C and the other with charge 6.91×10−6 C, are 0.0359 m apart. What is the magnitude of the force that one particle exerts on the other?

Answers

Answer:

-384.22N

Explanation:

From Coulomb's law;

F= Kq1q2/r^2

Where;

K= constant of Coulomb's law = 9 ×10^9 Nm^2C-2

q1 and q2 = magnitudes of the both charges

r= distance of separation

F= 9 ×10^9 × −7.97×10^−6 × 6.91×10^−6/(0.0359)^2

F= -495.65 × 10^-3/ 1.29 × 10^-3

F= -384.22N

Where is information first stored in a human brain​

Answers

Answer:

when u learn something new it goes to ur short term memory