Answer:
2.0 amps
Explanation:
Current is the ratio of voltage to resistance:
I = V/R = (3.0)/(1.5) = 2.0
The current in the wire is 2.0 amps.
Answer:
Following are the solution to the given question:
Explanation:
Please find the complete question in the attached file.
The cost after 30 days is 60 dollars. As energy remains constant, the cost per hour over 30 days will be decreased.
Thus,
The electricity used is continuously 694W over 30 days.
If just resistor loads (no reagents) were assumed,
Energy usage reduction percentage =
This bulb accounts for of the energy used, hence it saves when you switch it off.
7 true
8 false
9 false
10 false
11 false
12 true
13 true
hope this helps!
Faraday's Law of electromagnetic induction states that induced voltages produce currents that oppose the change in the magnetic field.
The law that the statement expresses is Faraday's Law of electromagnetic induction.
According to Faraday's Law, whenever there is a change in the magnetic field through a conductor, it induces an electromotive force (EMF) or voltage across the conductor. This induced voltage creates a current that flows in a direction that opposes the change in magnetic field.
This phenomenon is described by Lenz's Law, which states that the induced current always flows in such a way as to produce a magnetic field that opposes the change in the external magnetic field.
Part a)
Equation of position with time is given as
since this equation is a quadratic equation
so it will be a parabolic graph between t = 0 to t = 1
part b)
at t = 0.45 s
at t = 0.55 s
now the displacement is given as
so the average velocity is given by
part c)
at t = 0.49 s
at t = 0.51 s
now the displacement is given as
so the average velocity is given by
To develop this problem we will apply the concepts related to the potential energy per unit volume for which we will obtain an energy density relationship that can be related to the electric field. From this formula it will be possible to find the electric field required in the problem. Our values are given as
The potential energy,
The volume,
The potential energy per unit volume is defined as the energy density.
The energy density related with electric field is given by
Here, the permitivity of the free space is
Therefore, rerranging to find the electric field strength we have,
Therefore the electric field is 2.21V/m
To calculate the electric field strength that would store 12.5 Joules of energy in every 6.00 mm^3 of space, we use the energy density formula. We firstly find the energy density and input it into the formula to solve for the electric field strength. The result is approximately 6.87 X 10^6 N/C.
The energy stored in an electric field is given by the formula U = 1/2 ε E^2. Here, U is the energy density (energy per unit volume), E is the electric field strength, and ε is the permittivity of free space.
Given that the energy stored U is 12.5 joules, and the volume is 6.00 mm^3 or 6.00X10^-9 m^3, the energy density (U) can be computed as 12.5 J/6.00X10^-9 m^3 = 2.08X10^12 Joule/meter^3.
We can solve the formula for E (electric field strength): E = sqrt ((2U)/ε). Substituting the value of ε (8.85 × 10^-12 m^-3 kg^-1 s^4 A^2), we can find E to be approximately 6.87 X 10^6 N/C.
Learn more about Electric Field Strength here:
#SPJ3