Answer:
The volume flow rate is 3.27m³/s
Diameter at the refinery is 88.64cm
Explanation:
Given
At the wellhead
Pipes diameter, d2 = 59.1cm = 0.591m
Flow speed of petroleum f2 = 11.9m/s
At the refinery,
Pipes diameter, d1 = ? Unknown
Flow speed of petroleum, f1 = 5.29m/s
Calculating the volume flow rate of petroleum along the pipe.
Volume flow rate = Flow rate * Area along the pipe
V = 11.9 * πd²/4
V = 11.9 * 22/7 * 0.591²/4
V = 3.265778m³/s
The volume flow rate is 3.27m³/s -------- Approximated
Since it's not stated if the flowrate is uniform throughout the pipe, we'll assume that flow rate is the same through out...
Using V1A1 = V2A2, where V1 & V2 Volume flow rate at both ends and area = Area of pipes at both ends
This gives;
V1A1 = V1A2
V1*πd1²/4 = V2 * πd2²/4 ----------- Divide through by π/4
So, we are left with
V1d1² = V2d2²
5.29 * d1²= 11.9 * 59.1²
d1² = 11.9 * 59.1²/5.29
d1² = 7857.172
d1 = √7857.172
d1 = 88.6406904305240618
d1 = 88.64cm --------------- Approximated
Answer:
The two waves will add vectorially to produce a small amplitude wave in a valley phase.
Explanation:
The two waves will add vectorially to produce a small amplitude wave in a valley phase. This is because the amplitudes of the waves are slightly different and in opposite directions. When wave 1 cancels out all of wave 2, the resultant wave would be the slight difference between both waves, and it would be in the direction of wave 1 which is a valley phase.
Answer:
mnbhngbfcvdxc
Explanation:
Answer:
The answer is below
Explanation:
Let g = acceleration due to gravity = 9.81 m/s², x = half of the width of the crate, half of the height of the crate = 0.5 m, a = acceleration of crate, N = force raising the crate
The sum of moment is given as:
Sum of vertical forces is zero, hence:
Sum of horizontal force is zero, hence:
Solving equation 1, 2 and 3 simultaneously gives :
N = 447.8 N, a = 2.01 m/s², x = 0.25 m
x is supposed to be 0.3 m (0.6/2)
The crate would slip because x <0.3 m
Answer
given,
weight of solid sphere = 24.1 N
m = 24.1/g = 24.1/10 = 2.41 Kg
radius = R = 0.151 m
height of the ramp = 1.7 m
angle with horizontal = 34°
acceleration due to gravity = 10 m/s²
using energy conservation
I for sphere
v = r ω
v = 4.93 m/s
b) rotational kinetic energy
KE = 11.71 J
c) Translation kinetic energy
Answer:
Explanation:
Given
Length of string =2.15 m
mass of ball =5.49 kg
speed of ball=4.65 m/s
Here
Tension provides centripetal acceleration
-----1
------2
Divide 2 & 1