In an electric circuit, resistance and current are ____A. directly proportional
B. inversely proportional
C. have no effect on each other

Answers

Answer 1
Answer:

In an electric circuit, resistance and current are ____

A. directly proportional

B. inversely proportional

C. have no effect on each other

Explanation:

A


Related Questions

A 10.0kg object is moving at 1 m/s when a force is applied in the direction of the objects motion, causing it to speed up to 4 m/s. If the force was applied for 5s what is the magnitude of the force
Only one of three balls A, B, and C carries a net charge q. The balls are made from conducting material and are identical. One of the uncharged balls can become charged by touching it to the charged ball and then separating the two. This process of touching one ball to another and then separating the two balls can be repeated over and over again, with the result that the three balls can take on a variety of charges. Which one of the following distribution of charges could not possibly be achieved in this fashion, even if the process were repeated an infinite number of times?Why the answer is qA = 1/2q, qB=3/8q, qC=1/4q. Explain please.
A horizontal cylindrical tank 8.00 ft in diameter is half full of oil (60.0 Ib/ft3). Find the force on one end
When dots are further apart on a ticker-tape diagram, it indicates an object is moving
A truck traveling with an initial velocity of 44.1 m/s comes to a stop in 15.91 secs. What is theacceleration of the truck?

Which techniques can scientists use to determine the characteristics of Earth's layers? Select the two correct answers.examine the behavior of minerals at extremely low temperatures
study how seismic waves travel through different layers
drill deep mines to obtain samples from Earth's mantle and core
conduct experiments about how minerals change under high pressure
use X-rays to obtain a view of Earth's interior layers

Answers

Final answer:

Scientists can determine the characteristics of Earth's layers by studying seismic waves and drilling deep mines to obtain samples from the mantle and core.

Explanation:

The two correct techniques that scientists can use to determine the characteristics of Earth's layers are studying how seismic waves travel through different layers and drilling deep mines to obtain samples from Earth's mantle and core. By studying seismic waves, scientists can analyze their behavior and characteristics as they pass through different layers of the Earth, providing valuable information about their composition and structure. Additionally, drilling deep mines allows scientists to directly access and analyze samples from the Earth's deeper layers, providing insights into the composition and properties of the mantle and core.

Learn more about Earth's layers here:

brainly.com/question/18696113

#SPJ3

Write a paragraph or two (no more than 1 page) describing the misconception and then explain the correct physics by identifying the forces or physics concepts involved in simple terms, like you are talking to your 3rd grade sibling. Start with a question (will water fall out of the bucket when I stop rotating it?)
Give the common answer that is incorrect (what does your intuition tell you should happen?).
Explain what happens and why in simple terms (try practicing on an elementary student to make sure they understand).
Use diagrams and sketches in your explanation and avoid using physics terms like rotational, centripetal, normal forces, tension, friction, acceleration, velocity, vectors, buoyancy, energy, kinetics, potential, heat capacity, etc.

Answers

Answer:

1.) Everything that moves, will eventually come to a stop. Rest is the “natural” state of all objects

Of all physics misconceptions, this is the most common. Even the great philosopher Aristotle, included it into his most important contribution to the field, his famous Laws of Motion. But now we know it is wrong because Newton’s First Law of Motion tells us that “everything at rest will stay at rest, and everything in motion will stay in motion, unless acted upon by an external force.”

The first statement seems reasonable enough, but the second part is a little bit murky. The reason this confusion persists boils down to the fact that we are unable to identify the force that stops all motion, which is friction. Friction is a force that acts between two objects that are in contact and are moving relative to each other. When we roll a ball, it stops because of the frictional force acting between it and the floor.

2.) A continuous force is needed for continuous motion

This misconception is a direct consequence of the first one. While this is true, if you are, for example, pushing a grocery cart in a supermarket, again this is only because there is friction involved. The force you apply to keep an object moving is only to counteract the frictional force. If you were to throw a rock on outer space, it would travel with a constant velocity forever, unless it hits something, of course. This is because space is mostly empty (it has trace elements of gas and dust throughout), and there would not be any frictional force acting on that rock.

3.) An object is hard to push because it is heavy

This is one of the most common misconceptions because it’s something we see and feel everyday. While a heavy object is really hard to push, it is not because of its weight, but because of its inertia or mass. Inertia is an objects resistance to change in motion. It is important to note that inertia is resistance to “change motion” rather than just motion itself. When, I was a kid, I imagined that it would be easy to carry and push massive objects when in outer space, but not surprisingly, my younger self was wrong.,

With that said… Since these objects still have mass despite being weightless, this mass represents the object’s inertia.

4.) Planets revolve around the sun because they are pushed by gravity

We have to remember that gravity — the weakest of the four fundamental forces — is an attractive force. The reason why planets revolve around the Sun can be chalked up to the fact that the planets were already spinning within the protoplanetary disk encircling a young Sun. Gravity merely keeps the planets in orbit around the Sun, but it isn’t necessarily the one thing pushing the planets along their orbital plane.

5.)  Heavier objects fall faster than lighter ones

This misconception is already debunked long ago by Galileo on his experiment when he dropped two objects with different masses on the Leaning Tower of Pisa. He has shown on that experiment that objects move downward with the same acceleration.

Again, the problem comes from not being able to identify another force that is involved, which is air resistance. All objects moving through air, and hence, all falling objects, experience air resistance. This force is proportional to the area of the object in the direction of motion. Usually, this force is negligible, but for light objects — with weight comparable to the air resistance, like a feather — it will have a big effect. This is ultimately confirmed by the famous hammer and feather drop experiment on the moon.

6.) There is no gravity in outer space

There is gravity in outer space, it is just weaker than what we experience here on Earth. Astronauts that are orbiting the Earth don’t experience gravity because they are free-falling (yes, you read that right). All satellites, including the moon and the planets, are in a constant state of freefall.

They just also have a tangential velocity with their free fall, that is why they don’t crash to what they are orbiting. When something is in free fall, it becomes weightless. This is why Kate Upton can do a photo shoot in zero gravity here on Earth. The plane that they are riding in actually went into free fall to do that.

7.) Planets move in circular orbits around the Sun

Planets actually move in elliptical orbits around the sun (with the Sun being the focus of the ellipse). This is actually the first of Kepler’s Three Laws of Planetary Motion, which deals with precisely how planets orbit the Sun.

One misconception deals with our seasons. Some might wrongly come to the conclusion that Earth’s proximity to the Sun dictates the seasons (summer is when Earth is closest to the Sun and winter is when it’s farther away), but that’s not entirely true. In reality, our seasons are caused by the tilt of Earth’s axis.

In Europe, gasoline efficiency is measured in km/L. If your car's gas mileage is 28.0 mi/gal , how many liters of gasoline would you need to buy to complete a 142-km trip in Europe

Answers

Answer:

The volume required is  V  = 11.91 \ liters

Explanation:

From the question we are told that

  The cars mileage is  v =  28.0 mi/gal

   The  distance is  d  =  142 km

Converting the distance from km to  miles

        d =  142 *  0.6214 = 88.24 \ miles

Generally the volume of gasoline needed is mathematically represented as  

       V =  (d)/( v)

=>     V =  (88.24)/( 28.0 )

=>     V = 3.151 \ gal

Converting to  Liters

    =>   V = 3.151  *   3.78

     =>   V  = 11.91 \ liters

Based on the measured force between objects that are 10 meters apart, how can you find the force between objects that are any distance apart ?

Answers

The force between objects that are any distance apart is expressed as P'=(100P)/(r^2)

According to the gravitational law, the force acting on an object is directly proportional to the product of their masses and inversely proportional to the square of their distance apart. Mathematically,

P=(GMm)/(r^2)

M and m are the masses

r is the distance between the masses

If the force between objects that are 10 meters apart, hence;

P=(GMm)/(10^2)\nP=(GMm)/(100)\nGMm = 100P

To find the force between objects that are any distance apart, we will use the same formula above to have;

P'=(GMm)/(r^2)\n

Substitute the result above into the expression to have:

P'=(100P)/(r^2)

Hence the force between objects that are any distance apart is expressed as P'=(100P)/(r^2)

Learn more on gravitational law here: brainly.com/question/11760568

Answer:

F' = 100 F/r²

Explanation:

The gravitational force of attraction between two objects is given by the Newton's Gravitational Formula. The Newton's Gravitational Formula is as follows:

F = Gm₁m₂/r²

where,

F = Force between objects

G = Universal Gravitational Constant

m₁ = mass of first object

m₂ = mass of second object

r = distance between objects = 10 m

Therefore,

F = Gm₁m₂/10²

Gm₁m₂ = 100F   --------------------- equation (1)

Now, we consider these objects at any distance r apart. So, the force becomes:

F' = Gm₁m₂/r²

using equation (1), we get:

F' = 100 F/r²

So, if the force (F) between objects 10 m apart is known, we can find it at any distance from the above formula.

How does simple machines make work easier?

Answers

They make it so you would exert less force and make things easier to move

The simple machines can help make work easier by working quicker than the people and making other peoples jobs easier.

Explanation:

I hope this helped.

A 0.060 ???????? tennis ball, moving with a speed of 5.28 m/???? , has a head-on collision with a 0.080 ???????? ball initially moving in the same direction at a speed of 3.00 m/ ???? . Assume that the collision is perfectly elastic. Determine the velocity (speed and direction) of both the balls after the collision.

Answers

Explanation:

It is given that,

Mass of the tennis ball, m_1=0.06\ kg

Initial speed of tennis ball, u_1=5.28\ m/s

Mass of ball, m_2=0.08\ kg

Initial speed of ball, u_2=3\ m/s

In case of elastic collision, the momentum remains conserved. The momentum equation is given by :

m_1u_1+m_2u_2=m_1v_1+m_2v_2

v_1\ and\ v_2 are final speed of tennis ball and the ball respectively.

0.06* 5.28+0.08* 3=0.06v_1+0.08v_2

0.06v_1+0.08v_2=0.5568..............(1)

We know that the coefficient of restitution is equal to 1. It is given by :

(v_2-v_1)/(u_1-u_2)=1

(v_2-v_1)/(5.28-3)=1

{v_2-v_1}=2.28.................(2)

On solving equation (1) and (2) to find the values of velocities after collision.

v_1=5.28\ m/s

v_2=3\ m/s

So, the speed of both balls are 5.28 m/s and 3 m/s respectively. Hence, this is the required solution.