Answer:
360 Nm
Explanation:
Torque: This is the force that tend to cause a body to rotate or twist. The S.I unit of torque is Newton- meter (Nm).
From the question,
The expression of torque is given as
τ = F×d......................... Equation 1
Where, τ = Torque, F = force, d = distance of the bar perpendicular to the force.
Given: F = 40 N, d = 9 m
Substitute into equation 1
τ = 40(9)
τ = 360 Nm.
Answer:
360Nm
Explanation:
Torque is defined as the rotational effect of a force. The magnitude of a torque τ, is given by;
τ = r F sin θ
Where;
r = distance from the pivot point to the point where the force is applied
F = magnitude of the force applied
θ = the angle between the force and the vector directed from the point of application to the pivot point.
From the question;
r = 9m
F = 40N
θ = 90° (since the force is applied perpendicular to the end of the bar)
Substitute these values into equation (i) as follows;
τ = 9 x 40 sin 90°
τ = 360Nm
Therefore the torque is 360Nm
Answer: 3400
Explanation:
Given
Magnetic field, B = 0.1 T
Diameter of magnet, d = 2 cm = 0.02 m
Length of magnet, l = 8 cm = 0.08 m
Current of the magnet, I = 1.9 A
Number of turns needed, N = ?
To solve this problem, we would use the formula,
N = (LB) / (μI), where
μ = 1.257*10^-6 Tm/A, so that
N = (0.08 * 0.1) / (1.257*10^-6 * 1.9)
N = 0.008 / 2.388*10^-6
N = 3350
N ~ 3400
Therefore, the number of turns of wire needed is 3400
Answer:
P = 31.83 W
Explanation:
Our data are,
Magnitude of the force F = 26 N
Radius of the circular path r = 0.26 m
The angle between force and handle °
Time t = 2 s
We know that the formula to find the velocity is given by
Velocity
We know also that the formula to find the power is given by,
Answer; 10.6 i think
Explanation:
(a) At the top of the hill, the coaster has total energy (potential and kinetic)
E = (1000 kg) g (10 m) + 1/2 (1000 kg) (6 m/s)² = 116,000 J
As it reaches its lowest position, its potential energy is converted to kinetic energy, and some is lost to friction, making its speed v such that
1/2 (1000 kg) v ² = 116,000 J - 1700 J = 114,300 J
===> v ≈ 15.2 m/s
If no energy is lost to friction as the coaster makes its way up the second hill, all of its kinetic energy would be converted to potential energy at the maximum possible height H.
1/2 (1000 kg) (15.2 m/s)² = (1000 kg) gH
===> H ≈ 11.7 m
(b) At the top of the second hill with minimum height h, and with maximum speed 4.6 m/s, the coaster has energy
E = P + K = (1000 kg) gh + 1/2 (1000 kg) (4.6 m/s)²
Assuming friction isn't a factor again, the energy here should match the energy at the lowest point in part (a), 114,300 J.
(1000 kg) g h + 1/2 (1000 kg) (4.6 m/s)² = 114,300 J
===> h ≈ 10.6 m
Answer:
x(t) = 20t + 12.75e⁻¹•⁶ᵗ + 487.5
t = 24.375 s
Explanation:
The force balance on the object is given as
Net force = W - Drag force
ma = W - 10v
a = (dv/dt)
ma = m(dv/dt) = 200 - 10v
W = mg
200 = m×32
m = 6.25 kg
m(dv/dt) = 200 - 10v
6.25(dv/dt) = 200 - 10v
(dv/dt) = 32 - 1.6v
v' + 1.6v = 32
Solving this differential equation using the integrating factor method
(ve¹•⁶ᵗ) = ∫ (32e¹•⁶ᵗ) dt
ve¹•⁶ᵗ = (20e¹•⁶ᵗ) + c (where c = constant of integration)
v = (20 + ce⁻¹•⁶ᵗ)
At t = 0, v = 0
0 = 20 + c
c = -20
v = (20 - 20e⁻¹•⁶ᵗ)
v = (dx/dt)
(dx/dt) = 20 - 20e⁻¹•⁶ᵗ
dx = (20 - 20e⁻¹•⁶ᵗ) dt
x(t) = 20t + 12.5e⁻¹•⁶ᵗ + c (c is still the constant of integration)
At t = 0, x = - 500
- 500 = 0 + 12.5 + c
c = 512.5
x(t) = 20t + 12.75e⁻¹•⁶ᵗ - 487.5
when the object hits the ground, x = 0
0 = 20t + 12.75e⁻¹•⁶ᵗ - 487.5
20t + 12.75e⁻¹•⁶ᵗ = 487.5
Solving by trial and error,
t = 24.375 s
Hope this Helps!!!