Answer:
F = 6[N].
Explanation:
To solve this problem we must use the principle of conservation of linear momentum, which tells us that momentum is conserved before and after applying a force to a body. We must remember that the impulse can be calculated by means of the following equation.
where:
P = impulse or lineal momentum [kg*m/s]
m = mass = 10 [kg]
v = velocity [m/s]
F = force [N]
t = time = 5 [s]
Now we must be clear that the final linear momentum must be equal to the original linear momentum plus the applied momentum. In this way we can deduce the following equation.
where:
m₁ = mass of the object = 10 [kg]
v₁ = velocity of the object before the impulse = 1 [m/s]
v₂ = velocity of the object after the impulse = 4 [m/s]
Answer:
The longest straw will be 10.328 meters long.
Explanation:
The water will rise up to a height pressure due to which will balance the atmospheric pressure.
We know
Pressure due to water column of height 'h'
Equating both the values we get the value of height 'h' as
7 true
8 false
9 false
10 false
11 false
12 true
13 true
hope this helps!
Answer:
time is 32 s and speed is 304.3 m/s
Explanation:
Height, h = 146 m
speed, u = 14 m/s
Angle, A = 43 degree
Let it hits the ground after time t.
Use second equation of motion
Time cannot be negative so the time is t = 32 s .
The vertical velocity at the time of strike is
v' = u sin A - g t
v' = 14 sin 43 - 9.8 x 32 = 9.5 - 313.6 = - 304.1 m/s
horizontal velocity
v'' = 14 cos 43 =10.3 m/s
The resultant velocity at the time of strike is
(a) 328.6 kg m/s
The linear impulse experienced by the passenger in the car is equal to the change in momentum of the passenger:
where
m = 62.0 kg is the mass of the passenger
is the change in velocity of the car (and the passenger), which is
So, the linear impulse experienced by the passenger is
(b) 404.7 N
The linear impulse experienced by the passenger is also equal to the product between the average force and the time interval:
where in this case
is the linear impulse
is the time during which the force is applied
Solving the equation for F, we find the magnitude of the average force experienced by the passenger:
Answer:
The constant speed of second submarine is 31.16 km/hr
Explanation:
Given that
v₁=20 km/hr ,d₁= 500 Km
v₂=40 km/hr ,d₂=500 km
v₃=30 km/hr, d₃=500 km
v₄=50 km/hr ,d₄=500 km
We know that
Displacement = Velocity x Time
d = v t
Total displacement = Average velocity x Total time
Now by putting the values
So the constant speed of second submarine will be the average speed of first submarine because they have to meet at the same time.
The constant speed of second submarine is 31.16 km/hr
A high powered projectile is fired horizontally from the top of a cliff at a speed of 638.6 m/s. Determine the magnitude of the velocity (in m/s) after 5 seconds.
Take gravitational acceleration to be 9.81 m/s2.
2-
A man throws a ball with a velocity of 20.9 m/s upwards at 33.2° to the horizontal. At what vertical distance above the release height (in metres) will the ball strike a wall 13.0 m away ?
Take gravitational acceleration to be 9.81 m/s2.
3-
A particle is moving along a straight path and its position is defined by the equation s = (1t3 + -5t2 + 3) m, where t is measured in seconds. Determine the average velocity (in m/s) of the particle when t = 5 seconds.
4-
A particle has an initial speed of 26 m/s. The particle undergoes a deceleration of a = (-9t) m/s2, where t is measured in seconds. Determine the distance (in metres) the particle travels before it stops. When t = 0, s = 0.
Answer:
1.V= 640.48 m/s :total velocity in t= 5s
2. Y= 5.79m : vertical distance above the height of release (in meters) where the ball will hit a wall 13.0 m away
3. v =25m/s
4. s= (-1.5t³+26t ) m
Explanation:
1. Parabolic movement in the x-y plane , t=5s
V₀=638.6 m/s=Vx :Constant velocity in x
Vy=V₀y +gt= 0+9.8*5 = 49 m/s : variable velocity in y
V= 640.48 m/s : total velocity in t= 5s
2.
x=v₀x*t
13=v₀x*t
13=17.49*t
t=13/17.49=0.743s : time for 13.0 m away
th=v₀y/g=11.44/9.8= 1,17s :time for maximum height
at t=0.743 sthe ball is going up ,then g is negative
y=v₀y*t - 1/2 *g¨*t²
y=11.44*0.743 -1/2*9.8*0.743²
y= 5.79m : vertical distance above the height of release (in meters) where the ball will hit a wall 13.0 m away
3. s = (1t3 + -5t2 + 3) m
v=3t²-10t=3*25-50=75-50=25m/s
at t=0, s=3 m
at t=5s s=5³-5*5²+3
4. a = (-9t) m/s2
a=dv/dt=-9t
dv=-9tdt
v=∫ -9tdt
v=-9t²/2 + C1 equation (1)
in t=0 , v₀=26m/s ,in the equation (1) C1= 26
v=-9t²/2 + 26=ds/dt
ds=( -9t²/2 + 26)dt
s= ∫( -9t²/2 + 26)dt
s= -9t³/6+26t+C2 Equation 2
t = 0, s = 0 , C2=0
s= (-9t³/6+26t ) m
s= (-1.5t³+26t ) m