Answer:
Assuming h as the height of the cylindrical tank
Explanation:
Assuming that the height is we can find the volume of the cylindrical tank, then:
The diameter is 8.00 ft then the total volume of the tank is:
But the tank is half full of oil, then we need half of the volume. For that reason the volume of oil is:
We know the density of the oil , with this we can fing the mass of oil that we have because:
then
Then the mass of oil that we have is:
Note that with the value of h we have the mass in correct units.
Finally to find the force we now that then we just need to multiply the mass by the gravity.
Answer
given,
Tension of string is F
velocity is increased and the radius is not changed.
the string makes two complete revolutions every second
consider the centrifugal force acting on the stone
=
now centrifugal force is balanced by tension
T =
From the above expression we can clearly see that tension is directly proportional to velocity and inversely proportional to radius.
When radius is not changing velocity is increasing means tension will also increase in the string.
Answer:
a) x = 5.48 10⁻² m and b) 0.05 m
Explanation:
a) For a system in oscillatory motion the mechanical energy conserves and is described by the equation
Em = ½ k A²
Where k is the spring constant and at the amplitude of the movement
When the spring has the greatest extent, the kinetic energy is zero
Em = U = ½ k x²
Therefore, the amplitude of the movement is the same amplitude of the spring
Let's calculate
A = √ (2Em / k)
A = √ (2 0.12 / 80)
A = 0.0548 m = 5.48 10⁻² m
b) In this case the spring has kinetic energy that becomes elastic potential energy, let's calculate the mechanical energy before and after compressing the spring
Initial
Em = K = ½ m v²
Final
Em = Ke = ½ k x²
½ m v² = ½ k x²
x = √(m/k) v
x = 2 √(0.50 /800.0)
x = 0.05 m
Answer:
a) The greatest extension of the spring is 0.055 m
b) The spring compress 0.05 m
Explanation:
Please look at the solution in the attached Word file
Answer:
Explanation:
A sinusoidal wave is travelling on a string under tension T = 8.0(N), having a mass per unit length of 1 = 0.0128(kg/m). It’s displacement function is D(x,t) = Acos(kx - t). It’s amplitude is 0.001m and its wavelength is 0.8m. It reaches the end of this string, and continues on to a string with 2 = 0.0512(kg/m) and the same tension as the first string. Give the values of A, k, and , for the original wave, as well as k and the reflected JJJJJJave and the transmitted wave.
Answer:
with the current: 19.1 m/s eastern
against the current: 13.7 m/s western
Explanation:
The boat speed relative to ground is the sum of the boat speed relative to water + the water speed relative to ground.
Suppose eastern is positive, water speed due east is 2.7m/s.
When the boat is heading east, its speed relative to water is 16.4m/s, its speed relative to ground is 16.4 + 2.7 = 19.1 m/s eastern
When the boat is heading west, its speed relative to water is -16.4m/s, its speed relative to ground is -16.4 + 2.7 = -13.7 m/s western
Answer: With no friction, the box will accelerate down the ramp
Explanation:
Answer:
The magnitude of the force you must exert on the rope in order to accelerate upward is 705.6 N
Explanation:
The magnitude of force, you must exert can be estimated as follows;
Since it is upward motion, we must consider acceleration due to gravity which opposes the upward motion.
F = m(a+g)
where;
F is the magnitude of the upward force
m is your mass, which is the measure of inertia = 63kg
a is the acceleration of the rope = 1.4 m/s²
F = 63(1.4 + 9.8)
F = 63(11.2)
F = 705.6 N
Therefore, the magnitude of the force you must exert on the rope in order to accelerate upward is 705.6 N
Answer:
705.6 N
Explanation:
Force: This can be defined as the product of mass a acceleration.
The S.I unit of force is Newton.
The expression for the force on the rope in order to accelerate upward is given as,
F-W = ma .......................... Equation 1
Where F = Force exerted on the rope, W = weight of the rope, m = mass of the rope, a = acceleration.
But,
W = mg........................ Equation 2
Where g = acceleration due to gravity
substitute equation 2 into equation 1
F-mg = ma
F = ma+mg
F = m(a+g).............. Equation 3
Given: m = 63 kg, a = 1.4 m/s²
Constant: g = 9.8 m/s²
Substitute into equation 3
F = 63(1.4+9.8)
F = 63(11.2)
F = 705.6 N
The magnitude of the force exerted on the rope = 705.6 N