A truck traveling with an initial velocity of 44.1 m/s comes to a stop in 15.91 secs. What is theacceleration of the truck?

Answers

Answer 1
Answer:

Answer:

a=-2.77 m/s^2

Explanation:

Assuming constant acceleration,

v=at + v_0

where v_0 is the initial velocity.

At rest, v=0, so

0=at+v_0

So solving the equation for a:

a=(-v_0)/t

Inserting the numbers yields

a=-2.77 m/s^2


Related Questions

Assume that the force of a bow on an arrow behaves like the spring force. In aiming the arrow, an archer pulls the bow back 50 cm and holds it in position with a force of 150N . If the mass of the arrow is 50g and the "spring" is massless, what is the speed of the arrow immediately after it leaves the bow?
A 1000-kg car rolling on a smooth horizontal surface ( no friction) has speed of 20 m/s when it strikes a horizontal spring and is brought to rest in a distance of 2 m What is the spring’s stiffness constant?
While a roofer is working on a roof that slants at 37.0 ∘∘ above the horizontal, he accidentally nudges his 92.0 NN toolbox, causing it to start sliding downward, starting from rest. If it starts 4.25 m from the lower edge of the roof, how fast will the toolbox be moving just as it reaches the edge of the roof if the kinetic friction force on it is 22.0 N?
How does the force of gravity change as the mass of one object doubles?
What is the speed of an electron with a de Broglie wavelength of 0.20 nm?

A wagon is pulled at a speed of 0.40 m/s by a horse exerting 1800 Newtons of horizontal Force. how much work was done by the horse

Answers

The amount of work done per second by the horse exerting a force of 1800 N on a wagon moving with a speed of 0.4 m/s  is 720 J/s.

What is power?

Power is the workdone by a body in one second.

To calculate the work done by the horse in one seconds, we use the formula below

Formula:

  • P = Fv................ Equation 1

Where:

  • P = work done on the horse in one second
  • F = Force of the horse
  • v = Velocity of the wagon

From the question,

Given:

  • F = 1800 N
  • v = 0.4 m/s

Substitute these values into equation 1

  • P = 1800×0.4
  • P = 720 J/s

Hence, the amount of work done per second by the horse is 720 J/s.

Learn more about power here: brainly.com/question/25864308

#SPJ1

Complete question: A wagon is pulled at a speed of 0.40 m/s by a horse exerting 1800 Newtons of horizontal Force. how much work was done by the horse per second.

The Olympias is a reconstruction of a trireme, a type of Greek galley ship used over 2000 years ago. The power P (in kilowatts) needed to propel the Olympias at a desired speed s (in knots) can be modeled by this equation: P = 0.0289s3 A volunteer crew of the Olympias was able to generate a maximum power of about 10.5 kilowatts. What was their greatest speed? Start a New Thread

Answers

Answer:

7.13559 knots

Explanation:

Maximum power = 10.5 kilowatts

P=0.0289s^3

where,

P = Power in kilowatts

s = Desired speed in knots

Here, P = 10.5 kW

10.5=0.0289s^3\n\Rightarrow s^3=(10.5)/(0.0289)\n\Rightarrow s=\left((10.5)/(0.0289)\right)^{(1)/(3)}\n\Rightarrow s=7.13559\ knots

The greatest speed of the Olympians was 7.13559 knots

An infant throws 7 g of applesauce at a velocity of 0.5 m/s. All of the applesauce collides with a nearby wall and sticks to it. What is the decrease in kinetic energy of the applesauce?

Answers

Answer:

Δ KE = - 8.75 x 10⁻⁴ J

Explanation:

given,

mass of applesauce = 7 g = 0.007 Kg

initial velocity, u = 0.5 m/s

final velocity, v = 0 m/s

Decrease in kinetic energy = ?

initial kinetic energy

KE_1=(1)/(2)mu^2

KE_1=(1)/(2)* 0.007 * 0.5^2

      KE₁ = 8.75 x 10⁻⁴ J

final kinetic energy

KE_2=(1)/(2)mv^2

KE_2=(1)/(2)* 0.007 * 0^2

      KE₂ =0 J

Decrease in kinetic energy

Δ KE =  KE₂ - KE₁

Δ KE = 0 - 8.75 x 10⁻⁴

Δ KE = - 8.75 x 10⁻⁴ J

decrease in kinetic energy of the applesauce is equal to  8.75 x 10⁻⁴ J

Final answer:

The decrease in kinetic energy of the applesauce, when it hits the wall and stops, is the initial kinetic energy of it. Using the formula of kinetic energy, the decrease is calculated to be 0.000875 Joules.

Explanation:

This question relates to the concept of kinetic energy in physics. Kinetic energy is calculated by the formula 0.5 * mass (kg) * velocity (m/s)^2. So the initial kinetic energy of the applesauce right after being thrown was 0.5 * 0.007 kg * (0.5 m/s)^2 = 0.000875 Joules.

When the applesauce hits the wall and stops, its velocity drops to 0. Thus, its kinetic energy also goes to 0 (because kinetic energy is proportional to the square of velocity).

Therefore, the decrease in kinetic energy is the same as the initial kinetic energy of the applesauce, which is 0.000875 Joules.

Learn more about Kinetic Energy here:

brainly.com/question/33783036

#SPJ3

Ndividuals living in highly populated areas are more inclined to _______.a.
violence
b.
social interaction
c.
appetite loss
d.
all of the above

Answers

Answer:

B. Social Interaction.

Explanation:

A power P is required to do work W in a time interval T. What power is required to do work 3W in a time interval 5T? (a) 3P (b) 5P (c) 3P/5 (a) P (e) 5P/3

Answers

Answer:

(c) 3P/5

Explanation:

The formula to calculate the power is:

P=(W)/(T)

where

W is the work done

T is the time required for the work to be done

In the second part of the problem, we have

Work done: 3W

Time interval: 5T

So the power required is

P=(3W)/(5T)=(3)/(5)(W)/(T)=(3)/(5)P

If i throw up an object up at 31 m/s, how long will it take to get to its highest point

Answers

Answer:

Explanation:

vf=vi+at

vf=31 m/s

vi=0 m/s

a=g=9.8 m/s2

t=?

vf-vi=at

vf-vi/a=t

t=vf-vi/a

t=31 m/s-0/9.8

t=3.16 s