A large aquarium has portholes of thin transparent plastic with a radius of curvature of 1.95 m and their convex sides facing into the water. A shark hovers in front of a porthole, sizing up the dinner prospects outside the tank.a) If one of the sharks teeth is exactly 46.5 cm from the plastic, how far from the plastic does it appear to be to observers outside the tank? (You can ignore refraction due to the plastic.)b) Does the shark appear to be right side up or upside down?c) If the tooth has an actual length of 5.00 cm, how long does it appear to the observers?

Answers

Answer 1
Answer:

Answer:

Explanation:

For refraction through a curved surface , the formula is as follows

μ₂ / v - μ₁ / u  = (μ₂ -μ₁ )/R , Here μ₂( air) = 1 , μ₁ ( water) = 4/3 , R = 1.95 m

u , object distance  = -  .465 m

1 / v + 1.333 / .465  = (1 -1.333 )/1.95

1 / v + 2.8667  = - .171

1 / v = - 2.8667 - .171 = - 3.0377

v = - .3292 m

= - 32.92 cm

image will be formed in water.

c ) magnification = μ₁v / μ₂u ,  μ₁ = 1.33 , μ₂ = 1 , u = 46.5 , v = 32.92 .

= (1.33 x 32.92) / (1 x 46.5)

= .94

size of image of teeth = .94 x 5

= 4.7 cm .


Related Questions

An object moving with uniform acceleration has a velocity of 10.5 cm/s in the positive x-direction when its x-coordinate is 2.72 cm. If its x-coordinate 2.30 s later is ?5.00 cm, what is its acceleration? The object has moved to a particular coordinate in the positive x-direction with a certain velocity and constant acceleration; then it reverses its direction and moves in the negative x-direction to a particular x-coordinate in time t. We are given an initial velocity vi = 10.5 cm/s in the positive x-direction when the initial position is xi = 2.72 cm (t = 0). We are given that at t = 2.30 s, the final position is xf = ?5.00 cm. The acceleration is uniform so that we have the following equation in terms of the constant acceleration a. Xf-Xi=Vit-1/2at^2 Now we substitute the given values into this equation. (___cm)-(___cm)=(___cm/s)(__s)+1/2a(___s)
How long is a bus route across a small town
Somebody tell me what the answer is please
A basketball player jumps 76cm to get a rebound. How much time does he spend in the top 15cm of the jump (ascent and descent)?
The deflection plates in an oscilloscope are 10 cm by 2 cm with a gap distance of 1 mm. A 100 volt potential difference is suddenly applied to the initially uncharged plates through a 1025 ohm resistor in series with the deflection plates. How long does it take for the potential difference between the deflection plates to reach 55 volts?

Define reflection.what are the two types of reflection

Answers

Answer:

The reflection of light can be roughly categorized into two types of reflection: specular reflection is defined as light reflected from a smooth surface at a definite angle, and diffuse reflection, which is produced by rough surfaces that tend to reflect light in all directions

mark as brainliest plz

Explanation:

Final answer:

Reflection is the process of light bouncing off a surface and changing its direction. There are two types of reflection: specular reflection and diffuse reflection.

Explanation:

Reflection is the process of light bouncing off a surface and changing its direction. There are two types of reflection: specular reflection and diffuse reflection.

Specular reflection occurs when light reflects off a smooth surface, such as a mirror, at a specific angle.

Diffuse reflection occurs when light reflects off a rough surface, such as paper or clothing, and scatters in many different directions.

Learn more about reflection here:

brainly.com/question/15487308

#SPJ12

The speed of light is 3 x 10 m/s.Calculate the frequency of light that is absorbed the most by the 100m length of fibre.
Give your answer in standard form.

Answers

Answer:

3 * 10 {}^6

Before the development of quantum theory, Ernest Rutherford's experiments with gold atoms led him to propose the so-called Rutherford Model of atomic structure. The basic idea is that the nucleus of the atom is a very dense concentration of positive charge, and that negatively charged electrons orbit the nucleus in much the same manner as planets orbit a star. His experiments appeared to show that the average radius of an electron orbit around the gold nucleus must be about 10−1010−10 m. Stable gold has 79 protons and 118 neutrons in its nucleus. What is the strength of the nucleus' electric field at the orbital radius of the electrons?
What is the kinetic energy of an electron in a circular orbit around the gold nucleus?

Answers

Answer:

a)    F = -1.82 10⁻¹⁵ N,  b) K = 9.1 10⁻¹⁶ J

Explanation:

a) To calculate the force between the nucleus and the electrons, let's use the Coulomb equation

           F = k q Q / r²

as the nucleus occupies a very small volume compared to electrons, we can suppose it as punctual

let's calculate

          F = 9 10⁹ (-1.6 10⁻¹⁹) (79 1.6 10⁻¹⁹) / (10⁻¹⁰)²

          F = -1.82 10⁻¹⁵ N

b) they ask us for kinetic energy

let's use Newton's second law

         F = m a

acceleration is centripetal

         a = v² / r

we substitute

         F = m v² / r

         v = √ (F r / m)

         v = √ (1.82 10⁻¹⁵ 10⁻¹⁰ / 9.1 10⁻³¹)

         v = √ (0.2 10⁻¹⁶)

         v = 0.447 10⁸ m / s

kinetic energy is

          K = ½ m v²

          K = ½ 9.1 10⁻³¹ (0.447 10⁸)²

          K = 0.91 10⁻¹⁵ J

          K = 9.1 10⁻¹⁶ J

A Venturi tube may be used as the inlet to an automobile carburetor. If an inlet pipe with a diameter of 2.0 cm diameter narrows to diameter of 1.0 cm, determine the pressure drop in the constricted section for an initial airflow of 3.0 m/s in the 2-cm section? (Assume air density is 1.25 kg/m

Answers

The pressure drop is equal to 80.99 Pa

Given information:

d1 = 2 cm = 0.02 m

d2 = 1 cm = 0.01 m

v = 3 m/s

p = 1.25 kg/m^3

Here we use Bernoulli's principle for the Venturi Tube:

Calculation of pressure drop:

P1 - P2 = ((v^2* p)/ 2)* ((A1^2/ A2^2)-1)\n\nP1 - P2 = \Delta P = ((v1^2* p)/ 2)* ((A1^2/ A2^2)-1)

Now the following formula for area calculation should be used:

A1 = (\pi* d1^2)/ 4 = (\pi* (0.02 m)^2)/ 4 = 0.00031 m^2\n\nA2 = (\pi* (0.01 m)^2)/ 4 = 0.000079 m^2\n\n\Delta P = ((3 m/s)^2 *1.25 kg/m^3)/ 2) * ((0.00031 m^2)^2/(0.000079 m^2)^2)-1)

= 80.99

Find out more information about the  Pressure here: brainly.com/question/356585?referrer=searchResults

Answer:

the pressure drop is equal to 80.99 Pa

Explanation:

we have the following data:

d1 = 2 cm = 0.02 m

d2 = 1 cm = 0.01 m

v = 3 m/s

p = 1.25 kg/m^3

ΔP = ?

For the calculation of the pressure drop we will use Bernoulli's principle for the Venturi Tube:

P1 - P2 = ((v^2*p)/2)*((A1^2/A2^2)-1)

where A = area

P1 - P2 = ΔP = ((v1^2*p)/2)*((A1^2/A2^2)-1)

for the calculation of the areas we will use the following formula:

A1 = (pi*d1^2)/4 = (pi*(0.02 m)^2)/4 = 0.00031 m^2

A2 = (pi*(0.01 m)^2)/4 = 0.000079 m^2

ΔP = ((3 m/s)^2*1.25 kg/m^3)/2)*((0.00031 m^2)^2/(0.000079 m^2)^2)-1) = 80.99 N/m^2 = Pa

WILL MARK BRAINLIEST PLS HELPPP -- Which of Newton’s Laws explains why the satellite would collide with the moon if gravity is “turned off?”picture attached

Answers

Answer:

b

Explanation:

B is the answer sorry for the late response

The presence of dwarf galaxies around the Milky Way supports what picture of our galaxy’s formation?

Answers

Answer:

The presence of dwarf galaxies around the Milky Way supports what picture that our galaxy was formed by a coming together or combination of smaller systems