Explanation:
Given data:
Area A = 10 cm×2 cm = 20×10⁻⁴ m²
Distance d between the plates = 1 mm = 1×10⁻³m
Voltage of the battery is emf = 100 V
Resistance = 1025 ohm
Solution:
In RC circuit, the voltage between the plates is related to time t. Initially the voltage is equal to that of battery V₀ = emf = 100V. But After time t the resistance and capacitor changes it and the final voltage is V that is given by
Taking natural log on both sides,
(1)
Now we can calculate the capacitance by using the area of the plates.
C = ε₀A/d
=
= 18×10⁻¹²F
Now we can get the time when the voltage drop from 100 to 55 V by putting the values of C, V₀, V and R in the equation (1)
= -(1025Ω)(18×10⁻¹² F) ln( 1 - 55/100)
= 15×10⁻⁹s
= 15 ns
Answer:
Assuming h as the height of the cylindrical tank
Explanation:
Assuming that the height is we can find the volume of the cylindrical tank, then:
The diameter is 8.00 ft then the total volume of the tank is:
But the tank is half full of oil, then we need half of the volume. For that reason the volume of oil is:
We know the density of the oil , with this we can fing the mass of oil that we have because:
then
Then the mass of oil that we have is:
Note that with the value of h we have the mass in correct units.
Finally to find the force we now that then we just need to multiply the mass by the gravity.
Answer:
a) 4.45 m/s
b) 0.9 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
a) The vertical speed when the player leaves the ground is 4.45 m/s
Time taken to reach the maximum height is 0.45 seconds
Time taken to reach the ground from the maximum height is 0.45 seconds
b) Time the player stayed in the air is 0.45+0.45 = 0.9 seconds
Answer:
The answer is below
Explanation:
a) Using the formula:
b)
A. The rms value of electric field be "1.05 × 10⁶ N/C".
B. The rms value of magnetic field will be "3.5 × 10⁻³ T".
According to the question,
Intensity of the wave, S = 2.93 × 10⁹ W/m²
Free space permittivity, = 8.86 × 10⁻¹²
Speed of light, c = 3 × 10⁸
A. We know that,
The rms value of electric field,
→ =
By substituting the values,
=
= 1.05 × 10⁶ N/C
and,
B. We know that,
The rms value of magnetic field,
→ =
By substituting the values,
=
= 3.5 × 10⁻³ T
Thus the above response is appropriate.
Find out more information about magnetic field here:
To solve this problem, it is necessary to apply the concepts related to the electric field according to the intensity of the wave, the permittivity constant in free space and the speed of light.
As well as the expression of the rms of the magnetic field as a function of the electric field and the speed of light.
PART A) The expression for the rms of electric field is
Where,
S= Intensity of the wave
= Permitivitty at free space
c = Light speed
Replacing we have that,
The RMS value of electric field is
PART B) The expression for the RMS of magnetic field is,
The RMS of the magnetic field is
Answer:
a) the elongation of the wire when the mass is at its lowest point on the path = 0.5 cm
b) the elongation of the wire when the mass is at its highest point on the path = 0.42 cm
Explanation:
Given that;
the angular speed
Then converting it to rad/s ; we have:
=
= 12.57 rad/s
The cross-sectional area of the wire A = 0.014 cm²
A = (0.014 cm²) ( )
A =
mass (m) = 12.0 kg
R = 0.5 m
g = 9.8 m/s²
To calculate for the mass when its at the lowest point of the path; we use the Newton's second law of motion; which is expressed as:
where;
Now; we can rewrite our equation as;
Replacing our given values ; we have:
T = 1065.6294 N
T ≅ 1066 N
Determining the elongation in the wire by using the equation
Y =
Making the subject of the formula; we have
where ;
l = length of the wire
T =Tension in the wire
A = cross - sectional area
Y = young's modulus
Then;
=
= 0.5 cm
Thus, the elongation of the wire when the mass is at its lowest point on the path = 0.5 cm
b)
Using Newton's second law of motion also for the mass at its highest point of the path; we have:
Replacing our given values ; we have:
T = 830.4294 N
T = 830 N
Determining the elongation in the wire by using the equation
Y =
Making the subject of the formula; we have
where ;
l = length of the wire
T =Tension in the wire
A = cross - sectional area
Y = young's modulus
Then;
=
= 0.42 cm
Thus, the elongation of the wire when the mass is at its highest point on the path = 0.42 cm
To calculate the quantity of heat that must be removed from 6.1 g of 100°C steam, we need to consider both the change in temperature and the phase change from steam to liquid. The specific heat of water is used to calculate the heat required to lower the temperature, while the heat of vaporization is used to calculate the heat required to condense the steam. Adding these two heat values together gives us the total amount of heat that must be removed from the steam, which is approximately 3.61164 kcal.
When steam at 100°C condenses and its temperature is lowered to 46°C, heat must be removed from the steam. To calculate the amount of heat, we can use the specific heat of steam and the latent heat of vaporization. First, we calculate the heat required to lower the temperature of the steam from 100°C to 46°C using the specific heat of water. We then calculate the heat required to condense the steam using the latent heat of vaporization. Finally, we add these two heat values together to obtain the total amount of heat that must be removed from the steam.
Given:
Calculations:
Calculation:
Therefore, the quantity of heat that must be removed from 6.1 g of 100°C steam to condense it and lower its temperature to 46°C is approximately 3.61164 kcal.
#SPJ12
To condense and cool 6.1 g of 100°C steam to 46°C, 3.2879 kcal must be removed for condensation, and 0.3304 kcal for cooling, for a total of 3.6183 kcal.
Calculating the Quantity of Heat for Condensation and Cooling
To calculate the quantity of heat that must be removed from 6.1 g of 100°C steam to condense it and lower its temperature to 46°C, we need to consider two processes: condensation and cooling. For condensation, we use the heat of vaporization, and for cooling, we use the specific heat of water.
Total heat removed is the sum of the heat from both steps: 3.2879 kcal + 0.3304 kcal = 3.6183 kcal.
#SPJ3