Answer:
Explanation:
First, it is required to model the function that models the increasing force in the +x direction:
The equation is:
The impulse done by the engine is given by the following integral:
c.) What thickness of board (calculated 0.1 cm) would it take to stop the bullet, assuming that the acceleration through all boards is the same? ________cm
Answer:
a)
b)
c)s=14.92 cm
Explanation:
Given that
u= 470 m/s
v = 270 m/s
s= 10 cm
a)
We know that
b)
v= u + a t
c)
To stop the bullet it means that the final velocity will be zero.
s=14.92 cm
The torque about a given origin when a force N is acting on a particle at the position vector m is given by the cross product of the position and force vectors. It's represented by the SI unit Newton-meters, and for multiple particles, the total angular momentum is the vector sum of their individual angular momenta.
The torque about a given origin, when a force N is acting on a particle located at the position vector m, is calculated using the cross product of the position vector and the force vector. This can be written as τ = m x N. The SI unit of torque is Newton-meters (N.m).
As an example, if you apply a force perpendicularly at a distance from a pivot point, you will create a torque relative to that point. Similarly, the torque on a particle is also equal to the moment of inertia about the rotation axis times the angular acceleration.
If we consider multiple particles, the total angular momentum of these particles about the origin is the vector sum of their individual angular momenta. This is calculated by the expression for the angular momentum Ỉ = ŕ x p for each particle, where ŕ is the vector from the origin to the particle and p is the particle's linear momentum.
#SPJ12
The torque on a particle at a position vector m with force N acting on it is calculated by taking the cross-product of the position vector and the force. This principle is the same even in systems with multiple particles. The SI unit of torque is Newton-meters (N·m), which should not be confused with Joules (J).
The torque on a particle located at a position vector m with a force N acting on it is calculated by taking the cross-product of the position vector and the force. In terms of physics, torque (τ) is a measure of the force that can cause an object to rotate about an axis, and it is calculated as the product of the force and the distance from the axis of rotation to the point where force is applied. Hence, the formula for torque is τ = r x F where r is the position vector (or distance from the origin to the point where the force is applied) and F is the force. Remember, this equation gives a vector result with a direction perpendicular to the plane formed by r and F and a magnitude equal to the product of the magnitudes of r and F and the sine of the angle between r and F.
The same principle applies to systems where multiple particles are present. The total angular momentum of the system of particles about a particular point is the vector sum of the individual angular momenta about that point. Torque is the time derivative of angular momentum.
The SI unit for torque is Newton-meters (N·m), which should not be confused with Joules (J), as both have the same base units but represent different physical concepts. In this context, a net force of 40N acting at a distance of 0.800m from the origin would generate a torque of 32 N·m at the origin.
#SPJ11
Answer:
C. Pumping
Explanation:
???
Answer: Losing weight due to decreased appetite
Explanation: because you guys trust me
Answer:
The image formed by a convex mirror will always have its smaller than the size of the object no matter what the position of the object.
Explanation:
The image formed by a convex mirror will always have its smaller than the size of the object no matter what the position of the object.
Also notice that convex mirror always makes virtual images.
Another feature of the convex mirror is that an upright image is always formed by the convex mirror.
An important mirror formula to remember which is applicable for both convex and mirrors
Here:
'u' is an object which gets placed in front of a spherical mirror of focal
length 'f' and image 'u' is formed by the mirror.
Answer:
right side up
Explanation:
Answer:
the statements, the correct one is A
a downward force of gravity and an upward force exerted by the surface
Explanation:
When the disc is hit, a thrust force is exerted in the direction of movement, at the moment the disc moves this force loses contact and becomes zero.
When the movement is already established there are two main forces: gravity that acts downwards and the reaction force to the support of the disk called normal that acts upwards.
As it is not mentioned that there is friction, this force that opposes the movement is zero.
Analyzing the statements, the correct one is A
Answer:12.11 m
Explanation:
Given
Bug speed =1.7 m/s
Let mass of bug is m
mass of rod 16m
maximum angle turned by rod is 7^{\circ}[/tex]
From Energy conservation
kinetic energy of bug =Gain in potential energy of rod
L=12.11 m