Answer:
Acceleration = 8.27 cm/s²
Explanation:
We are given;
initial velocity; v_i = 10.5 cm/s
Initial position; x_i = 2.72 cm
Time; t = 2.30 s
final position; x_f = 5.00 cm
To find the acceleration, we will make use of the formula;
x_f - x_i = (v_i * t) - (½at²)
Plugging in the relevant values, we have;
5 - 2.72 = (10.5 × 2.3) - (½ × a × 2.3²)
2.28 = 24.15 - 2.645a
24.15 - 2.28 = 2.645a
2.645a = 21.87
a = 21.87/2.645
a = 8.27 cm/s²
Using the kinematic equation, the acceleration of the object was calculated to be approximately8.27 cm/s² given its initial velocity, position, time, and final position.
We are given:
Initial velocity (vᵢ) = 10.5 cm/s
Initial position (xᵢ) = 2.72 cm
Time (t) = 2.30 seconds
Final position () = 5.00 cm
We want to find the acceleration (a) of the object using the kinematic equation:
x₋ᵢ - xᵢ = (vᵢ * t) - (1/2) * a * t²
Now, let's substitute the given values:
5.00 cm - 2.72 cm = (10.5 cm/s * 2.30 s) - (1/2) * a * (2.30 s)²
Simplify the equation:
2.28 cm = 24.15 cm - (1/2) * a * 5.29 s²
Now, isolate 'a' by rearranging the equation:
-1.09 cm = (-1/2) * a * 5.29 s²
To remove the negative sign, multiply both sides by -1:
1.09 cm = (1/2) * a * 5.29 s²
Next, solve for 'a' by multiplying both sides by (2 / 5.29):
a ≈ (1.09 cm) / (2 / 5.29) s²
a ≈ 8.27 cm/s²
So, the acceleration of the object is approximately 8.27 cm/s².
For more such information on: acceleration
#SPJ6
Answer:
0.0768 revolutions per day
Explanation:
R = Radius
= Angular velocity
As the mass is conserved the angular momentum is conserved
Moment of intertia for solid sphere
Moment of intertia for hollow sphere
Dividing the moment of inertia
From the first equation
The angular velocity, in revolutions per day, of the expanding supernova shell is 0.0768 revolutions per day
To find the angular velocity of the expanding supernova shell, we can use the principle of conservation of angular momentum. The initial angular momentum of the star can be equated to the final angular momentum of the shell. By substituting the given information and solving the equation, we can find the angular velocity of the shell.
When a star undergoes a supernova explosion, a large amount of its mass is blown outward in the form of a rapidly expanding shell. To find the angular velocity of the expanding shell, we can use the principle of conservation of angular momentum. Assuming that all of the star's original mass is contained in the shell, we can equate the initial angular momentum of the star to the final angular momentum of the shell.
The angular velocity of the star before the explosion can be calculated using the equation:
angular velocity before = 2 * pi * initial frequency
where the initial frequency is given as 2.4 revolutions per day.
After the explosion, the radius of the expanding shell is given as 4.3 times the radius of the star. Using the principle of conservation of angular momentum, we can set the initial angular momentum of the star equal to the final angular momentum of the shell:
initial angular momentum of the star = final angular momentum of the shell
Since the final angular momentum of the shell is given by:
final angular momentum of the shell = moment of inertia of the shell * angular velocity of the shell
where the moment of inertia of the shell is given by:
moment of inertia of the shell = 2/5 * mass of the shell * (radius of the shell)^2
and the angular velocity of the shell is what we are trying to find, we can rewrite the equation as:
initial angular momentum of the star = 2/5 * mass of the shell * (radius of the shell)^2 * angular velocity of the shell
By substituting the expression for the initial angular momentum of the star and solving for the angular velocity of the shell, we can find the answer.
#SPJ11
Answer:
correct answer is 1 and 3
Explanation:
In direct measurement with an instrument, the precision or absolute error of the instrument is given by its appreciation, in this case we see that the measurements have two decimal places, so the appreciation of the instrument must be 0.01 cm
Based on this appreciation, the valid measurements are 5.52 and 5.5.
the other two measurements have errors much higher than the assessment of the instrument, for which there must have been some errors in the measurement.
The correct answer is 1 and 3
The force between objects that are any distance apart is expressed as
According to the gravitational law, the force acting on an object is directly proportional to the product of their masses and inversely proportional to the square of their distance apart. Mathematically,
M and m are the masses
r is the distance between the masses
If the force between objects that are 10 meters apart, hence;
To find the force between objects that are any distance apart, we will use the same formula above to have;
Substitute the result above into the expression to have:
Hence the force between objects that are any distance apart is expressed as
Learn more on gravitational law here: brainly.com/question/11760568
Answer:
F' = 100 F/r²
Explanation:
The gravitational force of attraction between two objects is given by the Newton's Gravitational Formula. The Newton's Gravitational Formula is as follows:
F = Gm₁m₂/r²
where,
F = Force between objects
G = Universal Gravitational Constant
m₁ = mass of first object
m₂ = mass of second object
r = distance between objects = 10 m
Therefore,
F = Gm₁m₂/10²
Gm₁m₂ = 100F --------------------- equation (1)
Now, we consider these objects at any distance r apart. So, the force becomes:
F' = Gm₁m₂/r²
using equation (1), we get:
F' = 100 F/r²
So, if the force (F) between objects 10 m apart is known, we can find it at any distance from the above formula.
Answer:
2.05 x 10^8 m /s
Explanation:
c = 3 x 10^8 m/s
μ = c / v
where, μ is the refractive index, c be the velocity of light in air and v be the velocity of light in the medium.
μ = 1.461
1.461 = 3 x 10^8 / v
v = 3 x 10^8 / 1.461
v = 2.05 x 10^8 m /s
Answer:
Explanation:
vf=vi+at
vf=31 m/s
vi=0 m/s
a=g=9.8 m/s2
t=?
vf-vi=at
vf-vi/a=t
t=vf-vi/a
t=31 m/s-0/9.8
t=3.16 s
Answer:
A. Weak forces
Explanation:
The fundamental forces responsible for beta decay is the weak force. Weak forces are among the four fundamental forces of universe the electromagnetic, gravitational and strong forces. The weak forces are responsible for the decaying. The fundamental work of weak forces is covert neutron into proton and electron into neutrino. weak forces operate at very low distances as low as fermi meter.
Answer:
The answer is
dark energy force.
hope this helps u stay safe
Explanation: