A) Net Force is -6.86N
B) The y component of momentum.
C) The x component of momentum should remain the same.
D)The y component of momentum decreases.
E)The z component of momentum should remain constant.
The following information should be considered:
(A)
The net force should be
= -9.8 (0.7)
= -6.86N
(B)
Due to the net force is on the y-axis, so only the vertical component of the momentum should be changed because to the force.
(C)
Because there is no resistance of air, the ball should be in projectilemotion problems, this represents hat the x component of the velocity remains constant, also does the mass.
D)
The y component of momentum reduced, this is due to gravity reduced the y component of the velocity.
E)Because there is no z component of the force there is no change in the z component of the momentum.
Learn more: brainly.com/question/9122916?referrer=searchResults
With negligible air resistance and low speed, the only significant net force on a 0.7 kg ball is gravity, affecting the ball's y component of momentum. The x component remains constant, and z component changes are not discussed without additional forces.
When a ball of mass 0.7 kg flies through the air at low speed with air resistance negligible, the net force acting on the ball while it is in motion is primarily due to gravity, which will be impacting the y component of the ball's momentum. The x component of the ball's momentum remains unchanged because no horizontal force is applied, while the y component changes due to gravity, and the z component would only change if there were forces acting in a direction out of the horizontal plane, which are not mentioned in the scenario. As for the Earth-ball system, momentum is conserved in the vertical direction because the system experiences no net external vertical force.
Answer:
I believe whale fossils were found.
the internal energy of the cube increases by 47000 cal its temperature
increases by:
A
B
C
D
E
5 °C
10 °C
20 °C
100 °C
200 °C
The change in temperature of this cube of aluminum is equal to: B. 10°C
Given the following data:
To find the change in temperature of this cube of aluminum:
First of all, we would determine the volume of this cube of aluminum.
Next, we calculate the mass of this cube of aluminum:
Mass = 21,600 grams.
Now, we can find the change in temperature of this cube of aluminum:
Mathematically, the quantity of heat energy is given by the formula;
Where:
Substituting the parameters into the formula, we have;
Change in temperature = 10°C
Read more: brainly.com/question/18877825
Answer:
10 °C
Explanation:
From the question given above, the following data were obtained:
Egde length (L) of aluminum = 20 cm
Density of Aluminum = 2.7 g/cm³
Specific heat capacity (C) of aluminum = 0.217 cal/ g°С
Heat (Q) energy = 47000 cal
Change in Temperature (ΔT) =?
Next, we shall determine the volume of the aluminum. This can be obtained as follow:
Egde length (L) of aluminum = 20 cm
Volume (V) of aluminum =?
V = L³
V = 20³
V = 8000 cm³
Thus, the volume of the aluminum is 8000 cm³
Next, we shall determine the mass of the aluminum. This can be obtained as follow:
Density of Aluminum = 2.7 g/cm³
Volume of Aluminum = 8000 cm³
Mass of aluminum =.?
Density = mass/volume
2.7 = mass /8000
Cross multiply
Mass of aluminum = 2.7 × 8000
Mass of Aluminum = 21600 g
Finally, we shall determine the change in temperature of the aluminum as follow:
Specific heat capacity (C) of aluminum = 0.217 Cal/g°С
Heat (Q) energy = 47000 Cal
Mass (M) of Aluminum = 21600 g
Change in Temperature (ΔT) =?
Q = MCΔT
47000 = 21600 × 0.217 × ΔT
47000 = 4687.2 × ΔT
Divide both side by 4687.2
ΔT = 47000 / 4687.2
ΔT = 10 °C
Therefore, the increase in the temperature of the aluminum is 10 °C.
The jogger would have ran about 10 km/h.
Answer:
In parallel combination, the capacity of each capacitor is 11 F.
In series combination, the capacity of each capacitor is 44 F.
Explanation:
Let there are two capacitors each of capacitance C.
When they are connected in parallel:
In parallel combination, the effective capacitance is Cp.
Cp = C1 + C2 = C + C
22 = 2 C
C = 11 F
When they are connected in series:
In parallel combination, the effective capacitance is Cs.
1 / Cs = 1 / C1 + 1 / C2 = 1 / C + 1 / C = 2 / C
1 / 22 = 2 / C
C = 44 F
Answer:
The width of the slit is 0.167 mm
Explanation:
Wavelength of light,
Distance from screen to slit, D = 88.5 cm = 0.885 m
The distance on the screen between the fifth order minimum and the central maximum is 1.61 cm, y = 1.61 cm = 0.0161 m
We need to find the width of the slit. The formula for the distance on the screen between the fifth order minimum and the central maximum is :
where
a = width of the slit
a = 0.000167 m
a = 0.167 mm
So, the width of the slit is 0.167 mm. Hence, this is the required solution.