An implanted pacemaker supplies the heart with 72 pulses per minute, each pulse providing 6.0 V for 0.65 ms. The resistance of the heart muscle between the pacemaker’s electrodes is 550 Ω. Find (a) the current that flows during a pulse, (b) the energy delivered in one pulse, and (c) the average power supplied by the pacemaker.

Answers

Answer 1
Answer:

Answer:

a) Current = 11 mA

b) Energy = 66 mJ

c) Power = 101.54 W

Explanation:

a) Voltage, V = IR

   Voltage, V = 6 V, Resistance, R = 550 Ω

   Current, I =(6)/(550)=0.011A=11mA

b) Energy = Current x Voltage = 6 x 0.011 = 0.066 J = 66 mJ

c) \texttt{Power=}(Energy)/(Time)=(0.066)/(0.65* 10^(-3))=101.54W    


Related Questions

At what temperature will silver have a resistivity that is two times the resistivity of iron at room temperature? (Assume room temperature is 20° C.)
The height of the upper falls at Yellowstone Falls is 33 m. When the water reaches the bottom of the falls, its speed is 26 m/s. Neglecting air resistance, what is the speed of the water at the top of the falls?
A beam of light, which is traveling in air, is reflected by a glass surface. Does the reflected beam experience a phase change, and if so, by how much is the phase of the beam changed?
You perform a double‑slit experiment in order to measure the wavelength of the new laser that you received for your birthday. You set your slit spacing at 1.09 mm and place your screen 8.61 m from the slits. Then, you illuminate the slits with your new toy and find on the screen that the tenth bright fringe is 4.53 cm away from the central bright fringe (counted as the zeroth bright fringe). What is your laser's wavelength ???? expressed in nanometers?
A 580-mm long tungsten wire, with a 0.046-mm-diameter circular cross section, is wrapped around in the shape of a coil and used as a filament in an incandescent light bulb. When the light bulb is connected to a battery, a current of 0.526 A is measured through the filament. (Note: tungsten has a resistivity of 4.9 × 10-8 Ω • m.). How many electrons pass through this filament in 5 seconds?

Ugoing o pri
7.) True or False: "Courtney is traveled 5 miles in 3 hours" is an example of
acceleration.
True
False

Answers

True tell me if im correct

Assuming a vertical trajectory with no drag, derive the applicable form of the rocket equation for this application

Answers

Answer:

The vertical trajectory is governed by Ordinary Differential Equation.

Time derivatives of each state variables.

d(d)/dt = v, d(m)/dt = -d(m-fuel)/dt, d(v)/dt = F/m.

Where V is velocity positive upwards, t is time, m is mass, m-fuel is fuel mass, F is Total force, positive upwards.

Therefore,

F = -mg - D + T, If V is positive and

F = -mg + D - T, If T is negative.

D is drag and the questions gave it as zero.

Explanation:

The two sign cases in derivative equations above are required because F is defined positive up, so the drag D and thrust T can subtract or add to F depending in the sign of V . In contrast, the gravity force contribution mg is always negative. In general, F will be some function of time, and may also depend on the characteristics of the particular rocket. For example, the T component of F will become zero after all the fuel is expended, after which point the rocket will be ballistic, with only the gravity force and the aerodynamic drag force being p

a force of 35N is exerted over a cylinder with an area of 5m^2. What pressure,in pascals, will be transmitted in the hydraulic system?

Answers

Answer:

The answer is 7 Pa

Explanation:

The pressure transmitted in the hydraulic system can be found by using the formula

p =  (f)/(a)  \n

f is the force

a is the area

From the question we have

p =  (35)/(5)  \n

We have the final answer as

7 Pa

Hope this helps you

How fast can the car take this curve this curve without skidding to the outside of the curve?

Answers

Lets write the data down. That will help us solve the problem later:

R = 36 m

θ = 18º

m = 1492 kg

μ = 0.67

g = 9.8 m/s²

Lets draw all the forces that act on the car:

In order to the car won't skidding to the outside of the curve we must have the centripetal force equals the friction force:

F_(cp)=f_a

(m.v^(2))/(R)=\mu.F_N

A stock person at the local grocery store has a job consisting of the following five segments:1) picking up boxes of tomatoes from the stockroom floor

2)accelerating to a comfortable speed.

3) Carring the boxes to the tomato display at constant speed.

4)decelerating to a stop.

5) lowering the boxes slowly to the floor.

During which of the five segments of the job does the stock person do positive work on the boxes?

A) (2) and (3)

B(1) and (2)

C) (1) only

D) (1), (2), (4) and (5)

E) (1) and (5)

Answers

Answer:

B

Explanation:

Work done can be said to be positive if the applied force has a component to be in the direction of the displacement and when the angle between the applied force and displacement is positive.

In 1 and 2 work done is positive

Nitrogen makes up about what percent of a human's body weight?

Answers

Answer:

the answer is 3.3 %

Explanation: