Answer:
V = 575.6 Volts
Explanation:
As we know that surface area of the equi-potential surface is given as
so we will say
Now the potential due to a point charge is given as
Temperature variations in a graph occur as a result of changing environmental conditions and changing temperature.
Temperature is a physical quantity which measures hotness and coldness of a body. Temperature measures the degree of vibration of molecule in a body. Temperature is measured in centigrade (°C), Fahrenheit (°F) and Kelvin (K) in which Kelvin (K) is a SI unit of temperature. Absolute scale of temperature means Kelvin scale of temperature. relation between Kelvin(K) and centigrade (°C), °C= K - 273.15 from equation, 273.15 K means 0 °C, which is freezing point of water (ice). when we give temperature to the body, its molecule or atom absorbs thermal energy and vibrate about their mean position. Amplitude of vibration get increases as we go on increasing temperature and for higher temperature force of attraction between molecules gets weaker. Hence for higher temperature, due to weaken the force of attraction between molecule, solid goes into liquid state. and further increase in temperature liquid goes into gaseous state.
To know more about Temperature :
#SPJ2.
Answer:
The tempature changes, and the envronment chnages because of this, therefore making tempature changes in a graph.
Explanation:
sorry if this isnt good
The man can climb , before the ladders starts to slip.
A - point at the top of the ladder
B - point at the bottom of the ladder
C - point where the man is positioned in the ladder
L- the length of the ladder
α - angle between ladder and ground
x - distance between C and B
The forces act on the ladder,
Horizontal reaction force (T) of the wall against the ladder
Vertical (upward) reaction force (R) of ground against the ladder.
Frictionalhorizontal ( to the left ) force (F)
Vertical( downwards) of the man,
mg = 75 Kg x 9.8 m/s² = 735 N
in static conditions,
∑Fx = T - F = 0 Since, T = F
∑Fy = mg - R = 0 Since, 735 - R = 0, R = 735
∑ Torques(b) = 0
In point B the torque produced by forces R and F is Zero
Then:
∑Torques(b) = 0
And the arm lever for each force,
mg = 735
Since, ∑Torques(b) = 0
Since,T = F
F < μR the ladder will starts slipping over the ground
μ(s) = 0.25
Therefore, the man can climb , before the ladders starts to slip. \
To know more about Torque,
Answer:
x (max) = 0,25*L*tanα
Explanation:
Letá call
A: point at the top of the ladder
B: the point at the bottom of the ladder
C: point where the man is up the ladder
L the length of the ladder
α angle between ladder and ground
"x" distance between C and B
Description
The following forces act on the ladder
Point A: horizontal (to the right) reaction (T) of the wall against the ladder
Point B : Vertical (upwards) reaction (R) of ground against the ladder
frictional horizontal ( to the left ) force (F)
Point C : Weight (vertical downwards)) of the man mg
mg = 75 Kg * 9,8 m/s² mg = 735 [N]
Then in static conditions:
∑Fx = T - F = 0 ⇒ T = F
∑Fy = mg - R = 0 ⇒ 735 - R = 0 ⇒ R = 735
∑Torques(b) = 0
Note: In point B the torque produced by forces R and F are equal to 0
Then:
∑Torques(b) = 0
And the arm lever for each force is:
mg = 735
d₁ for mg and d₂ for T
cos α = d₁/x then d₁ = x*cosα
sin α = d₂ / L then d₂ = L*sinα
Then:
∑Torques(b) = 0 ⇒ 735*x*cosα - T*L*sinα = 0
735*x*cosα = T*L*sinα
T = F then 735*x*cosα = F*L*sinα
F = (735)*x*cosα/L*sinα cos α / sinα = cotgα = 1/tanα
F = (735)*x*cotanα/L or F = (735)*x/L*tanα
When F < μ* R the ladder will stars slippering over the ground
μ(s) = 0,25 0,25*R = 735*x/L*tanα
x = 0,25*R*tanα*L/735
But R = mg = 735 then
0,25*L*tanα = x
Then x (max) = 0,25*L*tanα
B.1985
C.1995
D.2005
The correct answer is C. 1995
Explanation:
The graph shows the changes in the harvest of Atlantic cod. In general, this graph illustrates how the peak occurred in the 1980s but then there was a sudden and sharp decline in 1995. Indeed, 1995 is the year with the lowest number of harvested cod as in this year there were approximately least than 10 thousand metric tonnes of cods. Also, this year shows the collapse of fishing stocks or that the population of this fish collapsed, which made it impossible to harvest as many fish as in previous years. According to this, the year that shows the collapse of fishing stocks is 1995.
infrared waves
ocean waves
radio waves
untraviolet waves
Since electromagnetic waves do not require a medium for their transmission, the electromagnetic waves are radio waves, ultraviolet waves and infrared waves.
Electromagnetic waves or radiations are waves which occur as a result of the interaction between the electric and magnetic fields.
Electromagnetic waves do not require a material medium for their transmission and as such can travel through a vacuum.
Some examples of electromagnetic waves are radio waves, ultraviolet waves, microwaves, infrared waves etc.
Therefore, the electromagnetic waves are radio waves, ultraviolet waves and infrared waves.
Learn more about electromagnetic waves at: brainly.com/question/25847009
b. the angular location of the first order minimum in the diffraction pattern. Which means at this point the light experiences destructive interference.
c. the angular location of bright interference maxima in the pattern. Which means at this point the light experiences constructive interference.
d. the angular location of bright interference maxima in the pattern. Which means at this point the light experiences destructive interference.
Answer:
the answers the correct one is c
Explanation:
The diffraction pattern for a slit is
a sin θ = m λ
Where a is the width of the slit, λ the wavelength, m the order of destructive interference and θ the angle where the interference occurs.
The expression for multi-slit diffraction (diffraction grating) is
d sin θ = m λ
Where d is the distance between slits, λ the wavelength m the order of the diffraction maximums and θ the angle for these maximums.
When we compare the expressions of the answers the correct one is c
Find the given attachments