Answer:
a. 3.73 m/s b. 27.8 m/s²
Explanation:
(a) Calculate his velocity (in m/s) when he leaves the floor.
Using the conservation of energy principles,
Potential energy gained by basketball player = kinetic energy loss of basket ball player
So, ΔU + ΔK = 0
ΔU = -ΔK
mg(h' - h) = -1/2m(v'² - v²)
g(h' - h) = -1/2(v'² - v²) where g = acceleration due to gravity = 9.8 m/s², h' = 0.960 m, h = 0.250 m, v' =0 m/s (since the basketball player momentarily stops at h' = 0.960 m) and v = velocity with which the basketball player leaves the floor
Substituting the values of the variables into the equation, we have
9.8 m/s²(0.960 m - 0.250 m) = -1/2((0 m/s)² - v²)
9.8 m/s²(0.710 m) = -1/2(-v²)
6.958 m²/s² = v²/2
v² = 2 × 6.958 m²/s²
v² = 13.916 m²/s²
v = √(13.916 m²/s²)
v = 3.73 m/s
(b) Calculate his acceleration (in m/s2) while he is straightening his legs. He goes from zero to the velocity found in part (a) in a distance of 0.250 m.
Using v² = u² + 2as where u = initial speed of basketball player before lengthening = 0 m/s, v = final speed of basketball player after lengthening = 3.73 m/s, a = acceleration during lengthening and s = distance moved during lengthening = 0.250 m
So, making, a subject of the formula, we have
a = (v² - u²)/2s
Substituting the values of the variables into the equation, we have
a = ((3.73 m/s)² - (0 m/s)²)/(2 × 0.250 m)
a = (13.913 m²/s² - 0 m²/s²)/(0.50 m)
a = 13.913 m²/s²/(0.50 m)
a = 27.83 m/s²
a ≅ 27.8 m/s²
Answer:
Recoil velocity of cannon = 2.92 m/s
Explanation:
By law of conservation of momentum, we have momentum of cannon = momentum of cannonball.
Mass of cannon = 1200 kg
Mass of cannon ball = 100 kg
Velocity of cannon ball = 35 m/s
We have, Momentum of cannon = momentum of cannon ball
1200 x v = 100 x 35
v =3500/1200 = 2.92 m/s
Recoil velocity of cannon = 2.92 m/s
The recoil speed of the cannon is 2.92 m/s.
To find the recoil speed of the cannon, we can use the conservation of momentum. The initial momentum of the cannon and cannonball system is zero since the cannon is at rest before firing. The final momentum is the sum of the momenta of the cannon and cannonball after firing. Using the equation:
Initial momentum = Final momentum
(mass of cannon) x (recoil speed of cannon) = (mass of cannonball) x (velocity of cannonball)
Plugging in the given values:
(1200 kg) x (recoil speed of cannon) = (100 kg) x (35 m/s)
Solving for the recoil speed of the cannon:
recoil speed of cannon = (100 kg x 35 m/s) / 1200 kg = 2.92 m/s
#SPJ3
Answer:
The radius is
Explanation:
From the question we are told that
The current is
The magnetic field is
Generally the magnetic field produced by a current carrying conductor is mathematically represented as
=>
Here is the permeability of free space with value
=>
=>
Answer:
v(t) = 21.3t
v(t) = 5.3t
Explanation:
When no sliding friction and no air resistance occurs:
where;
Taking m = 3 ; the differential equation is:
By Integration;
since v(0) = 0 ; Then C = 0
v(t) = 21.3t
ii)
When there is sliding friction but no air resistance ;
Taking m =3 ; the differential equation is;
By integration; we have ;
v(t) = 5.3t
iii)
To find the differential equation for the velocity (t) of the box at time (t) with sliding friction and air resistance :
The differential equation is :
=
=
By integration
Since; V(0) = 0 ; Then C = -48
Answer:
His results gave the first evidence that atoms were made up of smaller particles.
Answer: hello your question is incomplete below is the complete question
Water stands at a depth H in a large open tank whose side walls are vertical . A hole is made in one of the walls at a depth h below the water surface. Part B How far above the bottom of the tank could a second hole be cut so that the stream emerging from it could have the same range as for the first hole
answer :
At Height ( h ) from the bottom of Tank
Explanation:
Determine how far above the bottom of the tank a second hole be cut
For the second hole to have the same range as the first hole
Range of first hole = Velocity of efflux of water * time of fall of water
= √ (2gh) * √( 2g (H - h) / g)
= √ ( 4(H-h) h)
Hence the Height at which the second hole should be placed to exercise same range of stream emerging = h from the bottom of the Tank
The second hole should be cut at the same height as the first hole to have the same range for the stream.
In order for the stream emerging from the second hole to have the same range as the first hole, the second hole should be cut at the same height as the first hole. This is because the range of the stream depends on the initial velocity and the vertical distance traveled. If the second hole is higher or lower than the first hole, the vertical distance traveled will be different and the range of the stream will be affected.
#SPJ3
b. down to the floor/ground.
c. to your left.
d. to your right.
Answer:
b. down to the floor/ground
Explanation:
The direction of the angular velocity can be easily found by the use of right hand rule. This rule states that when we curl the fingers of right hand in the direction of the rotation of the object, the direction of the thumb gives the direction of angular velocity. We apply this rule to our situation. Since, the door opens outward and the hinges are on right, it means that the rotation of door is clockwise. So, when we curl the fingers of right hand in clock wise direction, the thumb will point in downward direction. So, the direction of angular velocity will be down to the floor/ground.
The correct option is:
b. down to the floor/ground