Answer:
1.V= 640.48 m/s :total velocity in t= 5s
2. Y= 5.79m : vertical distance above the height of release (in meters) where the ball will hit a wall 13.0 m away
3. v =25m/s
4. s= (-1.5t³+26t ) m
Explanation:
1. Parabolic movement in the x-y plane , t=5s
V₀=638.6 m/s=Vx :Constant velocity in x
Vy=V₀y +gt= 0+9.8*5 = 49 m/s : variable velocity in y
V= 640.48 m/s : total velocity in t= 5s
2.
x=v₀x*t
13=v₀x*t
13=17.49*t
t=13/17.49=0.743s : time for 13.0 m away
th=v₀y/g=11.44/9.8= 1,17s :time for maximum height
at t=0.743 sthe ball is going up ,then g is negative
y=v₀y*t - 1/2 *g¨*t²
y=11.44*0.743 -1/2*9.8*0.743²
y= 5.79m : vertical distance above the height of release (in meters) where the ball will hit a wall 13.0 m away
3. s = (1t3 + -5t2 + 3) m
v=3t²-10t=3*25-50=75-50=25m/s
at t=0, s=3 m
at t=5s s=5³-5*5²+3
4. a = (-9t) m/s2
a=dv/dt=-9t
dv=-9tdt
v=∫ -9tdt
v=-9t²/2 + C1 equation (1)
in t=0 , v₀=26m/s ,in the equation (1) C1= 26
v=-9t²/2 + 26=ds/dt
ds=( -9t²/2 + 26)dt
s= ∫( -9t²/2 + 26)dt
s= -9t³/6+26t+C2 Equation 2
t = 0, s = 0 , C2=0
s= (-9t³/6+26t ) m
s= (-1.5t³+26t ) m
Answer:
Good conductor of heat
Explanation:
Because metals are shiny, ductile, malleable, sonorous, good conductors of heat and electricity and have high melting and boiling points
Answer: mine is different so im sorry im here for points
Explanation:
Answer:
The height is
The kinetic energy during collision is not conserved
The Mechanical energy during the collision is not conserved
The mechanical energy after the collision is not conserved
Explanation:
From the question we are told that
The mass of the block is
The mass of the wad of putty is
The speed o the wad of putty is
The law of momentum conservation can be mathematically represented as
Where is the initial momentum which is mathematically represented as
While is the initial momentum which is mathematically represented as
Where s the final velocity
So
Making the subject
substituting values
According to the law of energy conservation
Where KE is the kinetic energy of the system which is mathematically represented as
And PE is the potential energy of the system which is mathematically represented as
So
Making h the subject of the formula
substituting values
Now the kinetic energy is conserved during collision because the system change it height during which implies some of the kinetic energy was converted to potential energy during collision
The the mechanical energy of the system during the collision is conserved because this energy consists of the kinetic and the potential energy.
Now after the collision the mechanical energy is not conserved because the external force like air resistance has reduced the mechanical energy of that system
Answer:
6.5e-4 m
Explanation:
We need to solve this question using law of conservation of energy
Energy at the bottom of the incline= energy at the point where the block will stop
Therefore, Energy at the bottom of the incline consists of the potential energy stored in spring and gravitational potential energy=
Energy at the point where the block will stop consists of only gravitational potential energy=
Hence from Energy at the bottom of the incline= energy at the point where the block will stop
⇒
⇒
Also
where is the mass of block
is acceleration due to gravity=9.8 m/s
is the difference in height between two positions
⇒
Given m=2100kg
k=22N/cm=2200N/m
x=11cm=0.11 m
∴
⇒
⇒
⇒h=0.0006467m=
Answer:
A. Weak forces
Explanation:
The fundamental forces responsible for beta decay is the weak force. Weak forces are among the four fundamental forces of universe the electromagnetic, gravitational and strong forces. The weak forces are responsible for the decaying. The fundamental work of weak forces is covert neutron into proton and electron into neutrino. weak forces operate at very low distances as low as fermi meter.
Answer:
The answer is
dark energy force.
hope this helps u stay safe
Explanation:
The distance the putty-block system compress the spring is 0.15 meter.
Given the following data:
To determine how far (distance) the putty-block system compress the spring:
First of all, we would solver for the initialmomentum of the putty.
Next, we would apply the law of conservation of momentum to find the final velocity of the putty-block system:
Velocity, V = 0.94 m/s
To find the compression distance, we would apply the law of conservation of energy:
x = 0.15 meter
Read more: brainly.com/question/14621920
Answer:
Explanation:
Force constant of spring K = 21 N /m
we shall find the common velocity of putty-block system from law of conservation of momentum .
Initial momentum of putty
= 5.3 x 10⁻² x 8.97
= 47.54 x 10⁻² kg m/s
If common velocity after collision be V
47.54 x 10⁻² = ( 5.3x 10⁻² + .454) x V
V = .937 m/s
If x be compression on hitting the putty
1/2 k x² = 1/2 m V²
21 x² = ( 5.3x 10⁻² + .454) x .937²
x² = .0212
x = .1456 m
14.56 cm
Complete Question
An electron is accelerated by a 5.9 kV potential difference. das (sd38882) – Homework #9 – yu – (44120) 3 The charge on an electron is 1.60218 × 10−19 C and its mass is 9.10939 × 10−31 kg. How strong a magnetic field must be experienced by the electron if its path is a circle of radius 5.4 cm?
Answer:
The magnetic field strength is
Explanation:
The work done by the potential difference on the electron is related to the kinetic energy of the electron by this mathematical expression
Making v the subject
Where m is the mass of electron
v is the velocity of electron
q charge on electron
is the potential difference
Substituting values
f
For the electron to move in a circular path the magnetic force[] must be equal to the centripetal force[] and this is mathematically represented as
making B the subject
r is the radius with a value = 5.4cm =
Substituting values