Answer : The concentration of ion, pH and pOH of solution is, , 4.98 and 9.02 respectively.
Explanation : Given,
Concentration of ion =
pH : It is defined as the negative logarithm of hydrogen ion or hydronium ion concentration.
The expression used for pH is:
First we have to calculate the pH.
The pOH of the solution is, 9.02
Now we have to calculate the pH.
The pH of the solution is, 4.98
Now we have to calculate the concentration.
The concentration is,
Answer:
pOH = 9.022, [H⁺] = 1.5×10⁻⁵ M, pH = 4.978
Explanation:
Given: [OH⁻] = 9.5 × 10⁻¹⁰ M, T= 25°C
As, pOH = - log [OH⁻]
⇒ pOH = - log (9.5 x 10⁻¹⁰) = 9.022
The self-ionisation constant of water is given by
Kw = [H⁺] [OH⁻] and pKw = pH + pOH
Since, at room temperature (25°C): Kw = 1.0 × 10⁻¹⁴ and pKw = 14.
Therefore, Kw = [H⁺] [OH⁻] = 1.0 × 10⁻¹⁴
⇒ [H⁺] = (1.0 × 10⁻¹⁴) ÷ [OH⁻] = (1.0 ×10⁻¹⁴) ÷ [9.5 × 10⁻¹⁰] = 0.105 ×10⁻⁴ = 1.5×10⁻⁵ M
also,
pH + pOH = pKw = 14
⇒ pH = 14 - pOH = 14 - 9.022 = 4.978
SpongeBob
SpongeBob
Patrick
Patrick
Larry
In the experiment, SpongeBob is the control group because regular lotion is used instead of the muscle cream. This allows a comparison with Patrick(rightly known as the experimental group) who uses the special muscle cream.
In the given scenario, SpongeBob represents the control group. In any experiment, the control group is the one that is kept normal or unchanged to be able to compare the effects of the variable being tested. In this case, it's the use of the special muscle cream. Patrick, whose arms and back are lathered with the muscle cream before each session, represents the experimental group because he is exposed to the variable being tested, which is the muscle cream. On the other hand, SpongeBob, who is given regular lotion instead of the special muscle cream, is part of the control group because he helps to provide a baseline for comparison.
#SPJ3
Answer:
0.051
Explanation:
Let's consider the following reaction.
2 SO₂(g) + O₂(g) ⇄ 2 SO₃(g)
We can compute the pressures using an ICE chart.
2 SO₂(g) + O₂(g) ⇄ 2 SO₃(g)
I 3.3 0.79 0
C -2x -x +2x
E 3.3-2x 0.79-x 2x
The partial pressure of sulfur trioxide gas is 0.47 atm. Then,
2x = 0.47
x = 0.24
The pressures at equilibrium are:
pSO₂ = 3.3-2x = 3.3-2(0.24) = 2.82 atm
pO₂ = 0.79-x = 0.79-0.24 = 0.55 atm
pSO₃ = 0.47 atm
The pressure equilibrium constant (Kp) is:
Kp = pSO₃² / pSO₂² × pO₂
Kp = 0.47² / 2.82² × 0.55
Kp = 0.051
Using Boyle's Law of gases which states that the pressure and volume of a gas have an inverse relationship when temperature is kept constant, we find that when the pressure of the gas increases from 5.0 to 7.0 atmospheres, the volume of the gas decreases to approximately 3.57 liters.
The question pertains to the application of Boyle's Law, a fundamental concept in the field of physics dealing with gases. Boyle's Law states that the pressure and volume of a gas have an inverse relationship when the temperature is held constant. This means if the pressure of a gas increases, the volume decreases, and vice versa.
In this case, you have 5.0 liters of a gas under an initial pressure of 5.0 atmospheres. The pressure is then increased to 7.0 atmospheres, and you are asked to determine the new volume of the gas. To solve this problem, we use the formula for Boyle's Law, which is P1V1 = P2V2. We know P1 (initial pressure) is 5.0 atmospheres and V1 (initial volume) is 5.0 liters. P2 (final pressure) is increased to 7.0 atmospheres and V2 (final volume) is what we are trying to find.
So, we plug the numbers into the equation and get: 5.0 atmospheres * 5.0 liters = 7.0 atmospheres * V2. Solving for V2, we find V2 to be approximately 3.57 liters. Therefore, when the pressure of the gas is increased from 5.0 atmospheres to 7.0 atmospheres, the volume decreases to around 3.57 liters, while the temperature remains constant.
#SPJ12
Answer:
Explanation:
Mᵣ: 58.44 278.11
Pb(NO₃)₂ + 2NaCl ⟶ PbCl₂ + 2NaNO₃
m/g: 26.3
1. Moles of NaCl
(b) Moles of PbCl₂
(c) Theoretical yield of PbCl₂
(d) Percent yield
music for three hours each day. Plant D does not listen to any music at all.
1. Based on the experiment in the scenario, which visual aid would be most helpful in showing the change in the plants' heights over time?
O A. A line graph
O B. A pie chart
OC. A bar graph
O D. A timeline
Answer:
A. A line graph
Explanation:
You use line graphs to track changes over time. Line graphs are better when the changes are small. They are also more useful when you want to compare changes over the same period for more than one group, for example, plants exposed to music and a control group.
B is wrong. A pie chart is best for comparing parts of a whole.
C is wrong. You can use a bar graph to track changes over time, but small changes are harder to spot.
D is wrong. You use a timeline to mark important points in time, for example, when you are deciding the times when you must complete various stages of a project.
Which of the charts below do you think is more helpful in showing the change in plant height over time?
C.Only CuS will precipitate from solution
Aqueous solutions of sodium sulfide and copper(II) chloride are mixed together.
Na₂S(aq) + CuCl₂(aq) → Products
Na₂S(aq) + CuCl₂(aq) → CuS(s) ↓ + 2NaCl(aq)
When the sulfide bond to the cation Cu²⁺ it makes a precipitate (s)
Thus,the correct answer is C.
Learn more :
brainly.com/question/25206657?referrer=searchResults
Answer:
The correct state for the answer is c.
Only CuS will precipitate from solution
Explanation:
We analyse the compounds for the reaction and we write the equation:
Na₂S(aq) + CuCl₂(aq) → Products
For this case, the products are NaCl and CuS. The complete balanced reaction is:
Na₂S(aq) + CuCl₂(aq) → CuS(s) ↓ + 2NaCl(aq)
When the sulfide bond to the cation Cu²⁺ it makes a precipitate (s)
Salts from chlorides are soluble except for the Ag⁺, Pb⁺ or Cu⁺
Salts from S⁻² which are soluble, are found in the group 2 of the Periodic Table (Ca²⁺, Ba²⁺, Mg²⁺)
The correct state for the answer is c.