To neutralize the KOH solution, we need 61.4 mL of 1.33 mol L−1 H2SO4(aq).
To find the volume of the H2SO4 solution needed to neutralize the KOH solution, we can use the equation:
Mole of H2SO4 = Molarity of KOH x Volume of KOH
First, calculate the moles of KOH:
Moles of KOH = Molarity of KOH x Volume of KOH = 0.830 mol/L x (49.3 mL / 1000 mL) = 0.04089 mol
Since H2SO4 is a diprotic acid and KOH is a strong base, the reaction will be:
H2SO4 + 2 KOH -> K2SO4 + 2 H2O
Therefore, the ratio between the moles of H2SO4 and KOH is 1:2. This means that twice the moles of KOH will be needed to neutralize the H2SO4. Calculate the moles of H2SO4 needed:
Moles of H2SO4 needed = 2 x Moles of KOH
= 2 x 0.04089 mol
= 0.08178 mol
Finally, calculate the volume of the H2SO4 solution needed:
Volume of H2SO4 = Moles of H2SO4 / Molarity of H2SO4 = 0.08178 mol / 1.33 mol/L
= 0.0614 L
= 61.4 mL
#SPJ1
Answer : The mass of NaOH present in the solution is, 0.0625 grams
Explanation : Given,
Mass % = 25 %
Mass of solution = 0.250 g
Formula used :
Now put all the given values in this formula, we get the mass of NaOH.
Therefore, the mass of NaOH present in the solution is, 0.0625 grams
compound with a molecular mass of 46.07 amu causesthe temperature
in the calorimeter to rise from 25.000oC to 30.589
oC. The total heat capacity ofthe calorimeter and all
its contents is 3576 JoC-1. What is
the energy of combustion ofthe organic compound,
DU/ kJ
mol-1?
Answer:
1383.34 kJ/mol is the energy released on combustion of the organic compound.
Explanation:
Mass of an organic compound = 0.6654 g
Molar mass of organic compound = 46.07 g/mol
Moles of an organic compound =
Let heat evolved during burning of 0.6654 grams of an organic compound be -Q.
Heat absorbed by calorimeter = Q' = -Q
The total heat capacity of the calorimeter all its contents = C
C = 3576 J/°C
Change in temperature of the calorimeter =
ΔT = 30.589°C - 25.000°C = 5.589°C
Q' = 19.975 kJ
Q = -19.975 kJ (negative sign; energy released)
0.01444 moles of an organic compound gives 19.975 kilo Joule.
The 1 mole of an organic compound will give :
1. The nitric acid solution will oxidize and thus dissolve _________. This will allow to identify ________.
2. To distinguish between ________, we can use the nickel nitrate
3. The nickel nitrate solution will oxidize and thus dissolve ________ and will not oxidize or dissolve ________.
Options:
a. Zn and Pt
b. Zn, Pb and Pt
c. Pb and Pt
d. Pb
e. Zn
f. Pt
g. Zn and Pb
Answer:
1.) The nitric acid solution will oxidize and thus dissolve _*(Zn and Pb)*_. This will allow to identify _**Pt**_.
2) To distinguish between _*(Zn and Pb)*_, we can use the nickel nitrate.
3) The nickel nitrate solution will oxidize and thus dissolve _**Zn**_ and will not oxidize or dissolve _**Pb**_.
Explanation:
1) Unlike Zinc and Lead, Platinum does not react with Nitric acid. So, it will be the only metal from step 1 that doesn't react. Pt is identified in this manner.
2) Nickel is higher than Lead in the activity series, but Zinc is higher than both of them in the activity series. This selectivity can be used to distinguish between Zinc and Lead metal powders.
3) Because Zinc is higher than Nickel in the activity series, it means that Zinc metal can and will displace Nickel from Nickel Nitrate solution. Therefore the Nickel Nitrate solution will oxidize and dissolve the Zinc metal.
But, there will be no reaction with the Lead metal powders sample as Pb is lower than Ni in the activity series, so, Nickel Nitrate solution will not oxidize or dissolve the Lead metal powders.
Answer:
38.96383282 amu
Explanation:
39.0983 = (40.9618 0.067302) + ( ? (1-0.067302)
39.0983 = 2.756811064 + ( ? 0.932698)
subtract 2.756811064 from both sides
36.34148894 = ( ? 0.932698)
divide both sides by 0.932698
? = 38.96383282 amu
Answer:
38.96383282 amu
Explanation:
39.0983 = (40.9618 0.067302) + ( ? (1-0.067302)
39.0983 = 2.756811064 + ( ? 0.932698)
subtract 2.756811064 from both sides
36.34148894 = ( ? 0.932698)
divide both sides by 0.932698
? = 38.96383282 amu
molar mass of N:
molar mass of O:
and the overall molar mass for Silver Nitrate.
Answer:
,Molar mass =169.87 g/mol
Explanation:
The systematic name for silver nitrate is
Now we have to calculate the molar mass of
Molar mass of Ag = 107.87 g/mol
Molar mass of N =14 g/mol
Molar mass of O =16 g/mol
So the molar mass of silver nitrate ( ) is
The balanced chemical equation between HCl and is:
Moles of =
Moles of HCl required to neutralize :
Calculating the volume of HCl from moles and molarity:
Answer:- 117 mL of HCl are used.
Solution:- The balanced equation for the reaction of HCl with barium hydroxide is written as:
From above equation, HCl and react in 2:1 mol ratio.
We will calculate the moles of barium hydroxide on dividing its grams by its molar mass.
Molar mass of Barium hydroxide is given as 171.3 g per mol.
= 0.00584 mol
Using mol ratio we calculate the moles of HCl as:
= 0.01168 mol HCl
We know that molarity is moles of solute per liter of solution. We have 0.01168 moles of HCl and its molarity is 0.100 M. So, we can calculate the liters of HCl solution used on dividing the moles by molarity as and on multiplying by 1000 the liters are converted to mL since, 1 L = 1000 mL.
= 116.8 mL
It could be round to 117 mL.
So, 117 mL of HCl are required.