Answer:
option (B)
Explanation:
Power, P = 600 W
mass of water, m = 250 g = 0.250 kg
T1 = 20° C
T2 = 80° C
ΔT = 80 - 20 = 60
specific heat of water, c = 4200 J/kg °C
Let the time taken is t.
Power x time = mass of water x specific heat of water x rise in temperature
600 x t = 0.250 x 4200 x 60
t = 105 second
option (B)
To heat 250g of water from 20°C to 80°C using a 600W microwave, it would approximately take 100 seconds.
In order to solve this problem, we first need to know the specific heat capacity of water, which is approximately 4.18 J/g°C. This value represents the amount of energy required to raise 1 gram of water by 1 degree Celsius. Given this value, we'll need to use the formula q = mcΔT, where q is the energy transferred (in joules), m is the mass of the water (in grams), c is the specific heat capacity (in J/g°C), and ΔT is the change in temperature (in °C).
We're given that the initial temperature of water is 20°C and we want to heat it to 80°C, so ΔT = 80°C - 20°C = 60°C. Substituting the known values into the formula, we get: q = 250g * 4.18 J/g°C * 60°C = 62700 J. Now, we know that power (P) = q/t. Given that the microwave oven operates at 600 W (or 600 J/s), we can solve for t: 62700 J ÷ 600 J/s ≈ 104.5 seconds. So, the closest answer would be (B) 100 seconds, considering the approximate value.
#SPJ3
s2dp6
s2p6
s2p4
Ne =[He]2s2 2p6
Ar = [Ne]3s2 3p6
Kr = [Ar]4s2 3d10 4p6
As it can be seen that for all three elements, their outermost orbital are completely filled, that is it has both s orbital, p orbital and d orbital fulfilled. Noble or inert gas atoms like Neon, Argon, Krypton have fulfilled valence shell. Fulfilled outermost orbital is the most stable electronic state, hence all elements tends to achieve such stability. These noble gas elements are called inert gas because of their fulfilled outermost shell. This means they don't react easily or take part in eletron donating, receiving or sharing. This is because, for all other elements except inert gas atoms, their valence shell is incomplete and they tend to react by other atoms so as to complete their outermost shell , which we call as duplet (in case of Helium like) or Octet state. Such elements either donate some electrons or receive some to acheive such stable state..
Explanation:
The given data is as follows.
height (h) = 4.70 m, mass = 81.0 kg
t = 1.84 s
As formula to calculate the velocity is as follows.
= 2gh
=
= 92.12
As relation between force, time and velocity is as follows.
F =
Hence, putting the given values into the above formula as follows.
F =
=
= 4055.28 N
Thus, we can conclude that the magnitude of the average force exerted on the diver during that time is 4055.28 N.
The range of the marble when fired horizontally from 1.8m above the ground can be calculated using the equations of motion in physics. First, the time of flight is found using the vertical motion and then the range is calculated using the time of flight and the initial velocity determined from the vertical launch. The marble's range is approximately 8.4m.
To solve this problem, we need to make use of the concept of projectile motion in physics. The most crucial part in solving this type of problem is to break the motion into its horizontal and vertical components.
First, we find the time the projectile is in the air using the vertical motion. Ignoring air resistance, the time a projectile is in the air is determined by the initial vertical velocity and the height from which it drops. Here, the height is given as 1.8m and we can use the equation h = 0.5gt^2, where h is the height, g is the acceleration due to gravity (9.8 m/s^2), and t is the time. After calculating, we find that the time the marble is in the air is about 0.6 seconds.
Now, we can use the time to find the horizontal distance traveled by the marble, a.k.a the range. The range is given by R = vt, where v is the horizontal velocity, which is the same as the initial vertical velocity. From the problem, we know the marble reached a height of 9.0m when shot vertically, which we can use to find the initial velocity using the equation v = sqrt(2gh), where g is the acceleration due to gravity (9.8 m/s^2) and h is the height. We find that the initial velocity is about 14 m/s.
So, the range R = vt = 14m/s * 0.6s = 8.4m. Therefore, the marble's range when fired horizontally from 1.8m above the ground is approximately 8.4m.
#SPJ3
Answer:
Explanation:
Velocity of electron = 6020 m/s
Velocity of proton = 1681 m/s
Electron space = 0.0476 m
Proton space = 0.0662 m
e = Charge of particle =
Number of electrons passing per second
Number of protons passing per second
Current due to electrons
Current due to protons
Total current
The average current is
Answer:
Gamma rays, x-rays, visible light, infrared radiation and radiowaves
Explanation:
Gamma rays, x-rays, ultraviolet, visible light, infrared radiation, microwave and radiowaves
Answer:
0.97566 m/s
Explanation:
= Mass of cannon = 2260 kg
= Velocity of cannon
= Mass of ball = 21 kg
= Velocity of ball = 105 m/s
As the momentum of the system is conserved we have
The velocity of the cannon is 0.97566 m/s