Answer:
1)
2)
3)
Explanation:
Given:
width of river,
speed of stream with respect to the ground,
speed of the swimmer with respect to water,
Now the resultant of the two velocities perpendicular to each other:
Now the angle of the resultant velocity form the vertical:
so,
Now the distance swept downward:
2)
On swimming 37° upstream:
The velocity component of stream cancelled by the swimmer:
Now the net effective speed of stream sweeping the swimmer:
The component of swimmer's velocity heading directly towards the opposite bank:
Now the angle of the resultant velocity of the swimmer from the normal to the stream:
Now the distance swept downstream:
3)
Time taken in crossing the rive in case 1:
Time taken in crossing the rive in case 2:
Answer:
a) The UV-B has frequencies between and
b) The radiation with a frequency of belong to the UV-A category.
Explanation:
(a) Find the range of frequencies for UV-B radiation.
Ultraviolet light belongs to the electromagnetic spectrum, which distributes radiation along it in order of different frequencies or wavelengths.
Higher frequencies:
Lower frequencies:
That radiation is formed by electromagnetic waves, which are transverse waves formed by an electric field and a magnetic field perpendicular to it. Any of those radiations will have a speed of in vacuum.
The velocity of a wave can be determined by means of the following equation:
(1)
Where c is the speed of light, is the frequency and is the wavelength.
Then, from equation 1 the frequency can be isolated.
(2)
Before using equation 2 to determine the range of UV-B it is necessary to express in units of meters in order to match with the units from c.
⇒
⇒
Hence, the UV-B has frequencies between and
(b) In which of these three categories does radiation with a frequency of belong.
The same approach followed in part A will be used to answer part B.
Case for UV-A:
⇒
Hence, the UV-A has frequencies between and .
Therefore, the radiation with a frequency of belongs to UV-A category.
True False It is not possible to measure simultaneously the z position and the z momentum component of a particle exactly.
Answer:
Statement 1) False
Statement 2) False
Statement 3) True
Explanation:
The uncertainty principle states that " in a physical system certain quantities cannot be measured with random precision no matter whatever the least count of the instrument is" or we can say while measuring simultaneously the position and momentum of a particle the error involved is
Thus if we measure x component of momentum of a particle with 100% precision we cannot measure it's position 100% accurately as the error will be always there.
Statement 1 is false since measurement of x and y positions has no relation to uncertainty.
Statement 2 is false as both the momentum components can be measured with 100% precision.
Statement 3 is true as as demanded by uncertainty principle since they are along same co-ordinates.
Answer:13.6 cm
Explanation:
Given
v(image distance)=-8.5 m
height of object=6 mm
height of image =37.5 cm
and magnification of concave mirror is given by
u=13.6 cm
so object is at a distance of 13.6 cm from mirror.
for focal length
f=-13.4 cm
thus radius of curvature of mirror is R=2f=26.8 cm
The filament of the headlight lamp should be placed about 0.85 m in front of the vertex of the mirror. The radius of curvature for the concave mirror should be approximately 0.85 m.
To determine how far in front of the vertex of the mirror the filament should be placed, we can use the mirror equation:
1/f = 1/do + 1/di
Where f is the focal length of the concave mirror, do is the object distance, and di is the image distance.
With the given information, we have:
do = ?
di = 8.50 m
Using the magnification formula:
magnification = -di/do
By substituting the values we know, we can solve for do:
37.5 cm / 6.00 mm = -8.50 m / do
Solving for do, we find that do ≈ - 0.85 m.
Since the object distance cannot be negative, we conclude that the filament of the headlight lamp should be placed about 0.85 m in front of the vertex of the mirror.
To find the radius of curvature for the concave mirror, we use the mirror formula:
1/f = 1/do + 1/di
With do = -0.85 m and di = 8.50 m, we can rearrange the formula to solve for f:
1/f = 1/-0.85 + 1/8.50
1/f ≈ -1.1765
Solving for f, we find that the focal length is approximately 0.85 m.
#SPJ3
Answer: 3400
Explanation:
Given
Magnetic field, B = 0.1 T
Diameter of magnet, d = 2 cm = 0.02 m
Length of magnet, l = 8 cm = 0.08 m
Current of the magnet, I = 1.9 A
Number of turns needed, N = ?
To solve this problem, we would use the formula,
N = (LB) / (μI), where
μ = 1.257*10^-6 Tm/A, so that
N = (0.08 * 0.1) / (1.257*10^-6 * 1.9)
N = 0.008 / 2.388*10^-6
N = 3350
N ~ 3400
Therefore, the number of turns of wire needed is 3400
Answer:
The temperature of silver at this given resistivity is 2971.1 ⁰C
Explanation:
The resistivity of silver is calculated as follows;
where;
Rt is the resistivity of silver at the given temperature
Ro is the resistivity of silver at room temperature
α is the temperature coefficient of resistance
To is the room temperature
T is the temperature at which the resistivity of silver will be two times the resistivity of iron at room temperature
Resistivity of iron at room temperature = 9.71 x 10⁻⁸ ohm.m
When silver's resistivity becomes 2 times the resistivity of iron, we will have the following equations;
Therefore, the temperature of silver at this given resistivity is 2971.1 ⁰C
Answer:
1360 m
Explanation:
Time taken for the thunder to travel the distance to the hikers = 4 seconds
Speed of the thunder = 340 m/s
Speed of light = 3×10⁸ m/s
It can be seen that the speed of light is substantially faster than the speed of sound. This is the reason why there is a delay in seeing the lightning and hearing the thunder.
Distance = Speed × Time
Hence, the lightning strike was 1360 m away from the hikers