Determine how many wavelengths will fit into the glass container when it is a vacuum. Since the light passes through the container twice, you need to determine how many wavelengths will fit into a glass container that has a length of 2L.

Answers

Answer 1
Answer:

Answer:

   # = 2L /λ

Explanation:

For this exercise we can use a direct proportion rule. If there is 1 wave in 1 wavelength in 2L wave how many lengths are there

                    # = 2L /λ 1 wave

 

let's calculate

                  # = 2L /λ

we see that the longer the wavelength the fewer waves fit in the container


Related Questions

A Hooke's law spring is mounted horizontally over a frictionless surface. The spring is then compressed a distance d and is used to launch a mass m along the frictionless surface. What compression of the spring would result in the mass attaining double the kinetic energy received in the above situation?
a. of water a. of bread a. of soap a. of juice a. of packet a. of sand option_piece packet grain bottle cake slice bale tank pane note tube bar can sack pile sheaf​
А pressure gauge with a measurement range of 0-10 bar has a quoted inaccuracy of £1.0% f.s. (+1% of full-scale reading). (a) What is the maximum measurement error expected for this instrument? (b) What is the likely measurement error expressed as a percentage of the or reading if this pressure gauge is measuring a pressure of 1 bar?​
Which statement would most likely be found in an advertisement from a cell phone provider
A dynamics cart with a friction pad is placed at the top of an inclined track and released fromrest. The cart accelerates down the incline at a rate of 0.60 m/s2. If the track is angled at 10degrees above the horizontal, determine the coefficient of kinetic friction between the cart andthe track.

The normal is a line perpendicular to the reflecting surface at the point of incidence.

Answers

Answer:

True

Explanation:

The normal line is defined as the line which is perpendicular to the reflecting surface at the point where the incident ray meet with the reflecting surface.

The angle of incident is defined as the angle which is subtended by the incident ray with respect to the normal ray by consider the normal ray as the base line and angle is measured from the point where incident ray is incident on the reflecting surface of the mirror.

Similarly reflecting ray can be defined as the ray which is reflected after the incident of a ray and the angle subtended by the reflecting ray is measure with respect to normal ray by considering normal ray as a base line.

Therefore, the normal ray is the perpendicular line to the reflecting surface at the point of incidence.

Light with a wavelength of 495 nm is falling on a surface and electrons with a maximum kinetic energy of 0.5 eV are ejected. What could you do to increase the maximum kinetic energy of electrons to 1.5 eV?

Answers

Answer:

To increase the maximum kinetic energy of electrons to 1.5 eV, it is necessary that ultraviolet radiation of 354 nm falls on the surface.

Explanation:

First, we have to calculate the work function of the element. The maximum kinetic energy as a function of the wavelength is given by:

K_(max)=(hc)/(\lambda)-W

Here h is the Planck's constant, c is the speed of light, \lambda is the wavelength of the light and W the work function of the element:

W=(hc)/(\lambda)-K_(max)\nW=((4.14*10^(-15)eV\cdot s)(3*10^8(m)/(s)))/(495*10^(-9)m)-0.5eV\nW=2.01eV

Now, we calculate the wavelength for the new maximum kinetic energy:

W+K_(max)=(hc)/(\lambda)\n\lambda=(hc)/(W+K_(max))\n\lambda=((4.14*10^(-15)eV\cdot s)(3*10^8(m)/(s)))/(2.01eV+1.5eV)\n\lambda=3.54*10^(-7)m=354*10^(-9)m=354nm

This wavelength corresponds to ultraviolet radiation. So, to increase the maximum kinetic energy of electrons to 1.5 eV, it is necessary that ultraviolet radiation of 354 nm falls on the surface.

A substance that does NOT conduct an electric current when it forms a solution is a(n) ____. a electrolyte

b nonelectrolyte

c liquid

d solid

Answers

Answer:

B. Nonelectrolyte.

Explanation:

Nonelectrolytes do not dissociate into ions in solution, hence, nonelectrolyte solutions don't conduct electricity.

A non-electrolyte doesn’t conduct electric current even when it forms a solution.

Answer: Option B

Explanation:

Where electrolytes are defined as the compounds that can conduct electric current with mobile ions existing in its solution, non-electrolytes are the compounds that don’t behave the same either in the aqueous solution or in the molten state.  

This is all because these compounds don’t produce mobile ions to flow from one electrode to the other and hence conduct electric flow in the solution. Sugar and ethanol are the best examples of non-electrolytes that don’t induce electric current even after getting dissolved in water.

25 POINTS FIRST CORRECT GET BRAINLIEST!!!!!!!!!!!!!!!!1

Answers

Answer:

carbon isnt 12

Explanation:

If the speed of light in a medium is 2 x 10^8 m/s, the medium's index of refraction is?

Answers

speed of light in the air is 3 x 10^8
so index of refractions would be speed of light divided by speed in the medium
3/2 = 1.5

Answer: n=1.5

by the way it is glass :) 

How long is a bus route across a small town

Answers

Answer:

4 kilometers

Explanation:

Final answer:

The length of a bus route in a small town can greatly depend on the specifics of the town and the route. It can range from a couple miles in a very small town to 20 miles or more for larger towns.

Explanation:

The length of a bus route across a small town can vary greatly depending on the size of the town and the specifics of the bus route. In a very small town, the bus route might only be a mile or two long. For larger towns, it could easily be 10-20 miles, or more. If you know the specifics of the route (streets it travels along, the number of stops, etc.), you could use a tool like Go_gle Maps to calculate an approximate distance.

Learn more about bus route here:

brainly.com/question/33654540

#SPJ11