What is the magnitude and direction of the electric field atradiaConsider a coaxial conducting cable consisting of a conductingrod of radius R1 inside of a thin-walled conducting shell of radius 2(both are infinite length). Suppose the inner rod hasradiusR1= 1.3 mm and outer shell has radiusR2= 10R1Ifthe net charge density on the center rod isq1= 3.4×10−12C/mand the outer shell isq2=−2q1,a.)What is the magnitude and direction of the electric field atradial distancer= 5R1from the center rod

Answers

Answer 1
Answer:

Answer:

 E = 9.4 10⁶ N / C,     The field goes from the inner cylinder to the outside

Explanation:

The best way to work this problem is with Gauss's law

             Ф = E. dA = qint / ε₀

 

We must define a Gaussian surface, which takes advantage of the symmetry of the problem. We select a cylinder with the faces perpendicular to the coaxial.

The flow on the faces is zero, since the field goes in the radial direction of the cylinders.

The area of ​​the cylinder is the length of the circle along the length of the cable

         dA = 2π dr L

          A = 2π r L

They indicate that the distance at which we must calculate the field is

         r = 5 R₁

         r = 5 1.3

         r = 6.5 mm

The radius of the outer shell is

         r₂ = 10 R₁

         r₂ = 10 1.3

         r₂ = 13 mm

         r₂ > r

When comparing these two values ​​we see that the field must be calculated between the two housings.

Gauss's law states that the charge is on the outside of the Gaussian surface does not contribute to the field, the charged on the inside of the surface is

         λ = q / L

         Qint = λ L

Let's replace

      E 2π r L = λ L /ε₀

       E = 1 / 2piε₀  λ / r

Let's calculate

         E = 1 / 2pi 8.85 10⁻¹²  3.4 10-12 / 6.5 10-3

         E = 9.4 10⁶ N / C

The field goes from the inner cylinder to the outside


Related Questions

Consider the interactions involved when you use a TV remote control to change the channel. Classify each interaction as long range or short range.
Box 1 and box 2 are whirling around a shaft with a constant angular velocity of magnitude ω. Box 1 is at a distance d from the central axis, and box 2 is at a distance 2d from the axis. You may ignore the mass of the strings and neglect the effect of gravity. Express your answer in terms of d, ω, m1 and m2, the masses of box 1 and 2. (a) Calculate TB, the tension in string B (the string connecting box 1 and box 2). (b) Calculate TA, the tension in string A (the string connecting box 1 and the shaft).
The fundamental force that is responsible for beta decay is the: A) weak force. B) strong force. C) dark energy force. D) gravitational force E) electromagnetic force.
A fully loaded, slow-moving freight elevator has a cab with a total mass of 1400 kg, which is required to travel upward 37 m in 3.6 min, starting and ending at rest. The elevator's counterweight has a mass of only 930 kg, so the elevator motor must help pull the cab upward. What average power is required of the force the motor exerts on the cab via the cable?
Burns produced by steam at 100°C are much more severe than those produced by the same mass of 100°C water. Calculate the quantity of heat in (Cal or kcal) that must be removed from 6.1 g of 100°C steam to condense it and lower its temperature to 46°C. Specific heat of water = 1.00 kcal/(kg · °C); heat of vaporization = 539 kcal/kg; specific heat of human flesh = 0.83 kcal/(kg · °C).

22. What force is necessary to accelerate a 2500kg car from rest to 20m/s over 10s?(6 Points)
2N
250N
5000N
50000N

Answers

Answer:

50000N

Explanation:

Force = mass × acceleration

= 2500 × 20

= 50000N

A 0.700-kg particle has a speed of 1.90 m/s at point circled A and kinetic energy of 7.20 J at point circled B. (a) What is its kinetic energy at circled A? 1.2635 Correct: Your answer is correct. J (b) What is its speed at circled B? 4.54 Correct: Your answer is correct. m/s (c) What is the net work done on the particle by external forces as it moves from circled A to circled B?

Answers

Answer:

a). E_(kA)=1.2635 J

b). V_(B)=4.535(m)/(s)

c). ΔE_(t)=8.4635 J

Explanation:

ΔE=kinetic energy

a).

E_(kA)=(1)/(2)*m*v_(A) ^(2) \n v_(A)=1.9 (m)/(s)\n m=0.70kg\nE_(kA)=(1)/(2)*0.70kg*(1.9 (m)/(s))^(2) \nE_(kA)=1.2635 J

b).

E_(kB)=(1)/(2)*m*v_(B) ^(2)

V_(B)^(2)=(E_(kB)*2)/(m) \nV_(B)=\sqrt{(E_(kB)*2)/(m)} \nV_(B)=\sqrt{(7.2J*2)/(0.70kg)} \nV_(B)=4.53 (m)/(s)

c).

net work= EkA+EkB

E_(t)=E_(kA)+ E_(kB)\nE_(t)=1.2635J+7.2J\nE_(t)=8.4635J

A train moves with a uniform velocity of 36km/hr 10sec. calculate the distance travelled​

Answers

Given:-

Speed = 36 km/hr

converting speed into m/s

Speed = 36*5/18

Speed = 10 m/s

t = 10 sec  

By using the Formula

Distance = Speed * time

D = 10*10

D = 100 m

Hope it helps....

A paper airplane moving 2.33 m/s has 0.161 J of KE. What is its mass? (Unit = kg)

Answers

The kinetic energy of an object is given by:

KE = 0.5mv²

KE = kinetic energy, m = mass, v = speed

Given values:

KE = 0.161J, v = 2.33m/s

Plug in and solve for m:

0.161 = 0.5m(2.33)²

m = 0.059kg

If 3.00 ✕ 10−3 kg of gold is deposited on the negative electrode of an electrolytic cell in a period of 2.59 h, what is the current in the cell during that period? Assume the gold ions carry one elementary unit of positive charge.

Answers

Answer:

0.158 A.

Explanation:

Mass of gold deposited = 3 x 10^-3 kg

= 3 g

Molar mass = 196 g/mol

Number of moles = 3/196

= 0.0153 mol.

Faraday's constant,

1 coloumb = 96500 C/mol

Quantity of charge, Q = 96500 * 0.0153

= 1477.04 C.

Remember,

Q = I * t

t = 2.59 hr

= 2.59 * 3600 s

= 9324 s

Current, I = 1477.04/9324

= 0.158 A.

Answer:

0.158A

Explanation:

Using Faraday's first law of electrolysis which states that the mass(m) of a substance deposited or liberated at any electrode is directly proportional to the quantity of charge or electricity (Q) passed. i.e

m ∝ Q

m = Z Q

Where;

Z is the proportionality constant called electrochemical equivalent.

Faraday also observed that when 1 Faraday of electricity is equivalent to 96500C of charge.

Also,

Quantity of charge (Q), which is the product of current (I) passing through and the time taken (t) for the electrolysis, is given by;

Q = I x t;         ----------------------(i)

With all of these in place, now let's go answer the question.

Since the gold ions carry one elementary unit of positive charge, now let's write the cathode-half reaction for gold (Au) as follows;

Au⁺ + e⁻ = Au  ---------------------(ii)

From equation (ii) it can be deduced that when;

1 Faraday (96500C) of electricity is passed, 1 mole of Au forms ( = 197 grams of Au)   [molar mass of Au = 197g]

Then, 3.00 x 10⁻³ kg (= 3 g of Au) will be formed by 3g x 96500C / 197g = 1469.5C

Therefore, the quantity of charge (Q) deposited is 1469.5C

Substitute this value (Q = 1469.5C)  and time t = 2.59h (= 2.59 x 3600 s) into equation (i);

Q = I x t

1469.5  = I x 2.59 x 3600

1469.5  = I x 9324

Solve for I;

I = 1469.5 / 9324

I = 0.158A

Therefore, the current in the cell during that period is 0.158A

Note:

1 mole of gold atoms = 176g

i.e the molar mass of gold (Au) is 176g

20 examples of scalar quantity​

Answers

Answer:

Length

Time

Mass

Temperature

Energy

Direct Current (DC)

Frequency

Volume

Speed

Amount of substance

Luminous Intensity

Density

Concentration

Refractive Index

Work

Pressure

Power

Charge

Electric Potential

Entropy