Answer:
V = 1.69 * 10^6 V
Explanation:
Parameters given:
Electric field, E = 59V/m
Charge, q = 5.40C
We need to first find the distance between the electric charge and the point of consideration to be able to find the Electric potential difference.
Electric field is given as:
E = (kq/r^2)
k = Coulombs constant
=> r^2 = kq/E
=> r^2 = (9 * 10^9 * 5.4) / 59
r^2 = 8.2 * 10^8
r = 2.84 * 10^4 m
We can now find the Electric Potential by using:
V = kq/r
Hence,
V = (9 * 10^9 * 5.4) / (2.84 * 10^4)
V = 1.69 * 10^6 V
Answer:
The expression would be ω =
Explanation:
Given that ω is the angular velocity
g is the acceleration due to gravity
L is the length
θ is the angle of downward tilt
For an object we compare the horizontal and vertical component of the forces acting on the body;
For vertical component
T sinθ = mg............1
For the horizontal component
T cos θ = .............2
R is our radius and is = L cos θ
v = ωR
substituting into equation 2 we have
T cos θ = m(ωR /R
T cos θ=m(ωR ..................3
Now comparing the vertical and the horizontal component we have;
equation 1 divided by equation 3 we have
T sin θ /T cos θ = mg / m(ωR
Tan θ = g / (ωR............4
Making ω the subject formula we have;
(ω = g/ R Tan θ
But R = L cos θ and Tan θ = sin θ/ cosθ
putting into equation 4 we have;
(ω = g /[( L cos θ) x( sin θ/ cosθ)]
(ω = g/ L sinθ
ω =
Therefor the expression for the angular velocity ω in terms of g, L and angle θ would be ω =
b) decrease
If its initial angular speed was 3890rpm , what is the magnitude of its angular deceleration? (|?| in revs/s^2 )
Part B
How many revolutions did the centrifuge complete after being turned off?
Answer:
Explanation:
Given:
time of constant deceleration,
A.
initial angular speed,
Using equation of motion:
B.
Using eq. of motion for no. of revolutions, we have:
Answer:
4.93 m
Explanation:
According to the question, the computation of the height is shown below:
But before that first we need to find out the speed which is shown below:
As we know that
= 9.92 m/s
Now
98.4064 = 19.96 × height
So, the height is 4.93 m
We simply applied the above formulas so that the height i.e H could arrive
The height of the water slide is 5.04 meters.
The problem described in this question involves a water slide, where swimmers start from rest at the top and leave the slide traveling horizontally. To determine the height of the slide, we can use the equations of motion in the horizontal direction. The horizontal displacement (x) is given as 5.00 m and the time (t) is given as 0.504 s. Assuming no friction or air resistance, we can use the equation x = v*t, where v is the horizontal velocity. Rearranging the equation, we can solve for v, which is equal to x/t. Substituting the given values, we have v = 5.00 m / 0.504 s = 9.92 m/s. The horizontal velocity (v) is constant throughout the motion, so we can use the equation v = sqrt(2*g*H), where g is the acceleration due to gravity (9.8 m/s^2) and H is the height of the slide. Rearranging the equation, we can solve for H, which is equal to v^2 / (2*g). Substituting the known values, we have H = (9.92 m/s)^2 / (2*9.8 m/s^2) = 5.04 m.
Answer:
Improvement in observational, and exploratory technology
Rapid increase in knowledge
International collaboration
Explanation:
Our knowledge of the solar system has increased greatly in the past few years due to to some factors which are listed below.
Improvement in observational, and exploratory technology: In recent years, developments in technology has led to the invention of advanced observational instruments and probes, that are used to study the solar system. Also more exploratory units are now developed to go out into the solar system and gather useful data which is then further processed to yield more results about our solar system.
Rapid increase in knowledge: The past few years has seen an increased number of theories proposed to explain phenomena in the solar system. Some of these theories have been seen to be accurate under experimentation, leading to newer and fresher insights into our solar system. Also, new experiments and research are carried out, all these leading to an exponential growth in our knowledge of the solar system.
International Collaboration: The sharing of knowledge by scientists all over has led to a better, quick understanding of the solar system. Also, scientists from different countries, working together on different experiment and data sharing regarding our solar system now allows our knowledge of the solar system to deepen faster.
Answer:
The spacing is 5.15 μm.
Explanation:
Given that,
Electron with energy = 25 eV
Wave length = 0.25 nm
Separation d= 0.16 mm
Distance D=3.3 m
We need to calculate the spacing
Using formula of width
Put the value into the formula
Hence, The spacing is 5.15 μm.
To calculate the spacing between maxima in a double slit interference pattern, we use the formula x = L * λ / d. Converting the given units to meters and plugging the values into the formula, we find that the spacing between maxima on the screen is approximately 5.14 micro meters.
To calculate the spacing between maxima, we can utilize the formula for double slit interference, θ = λ/d where λ represents the wavelength of the electron, d is the distance between the two slits, and θ is the angle of diffraction. Considering the small angle approximation for tan θ ≈ θ, we get x = L * λ / d, where x is the distance between maxima on the screen, and L is the distance from the slits to the screen.
Firstly, the electron's wavelength needs to be converted from nm to m, resulting in λ = 0.25 * 10^-9 m. Similarly, the slit separation d should be converted from mm to m, giving d = 0.16 * 10^-3 m. Inserting these values into the formula along with L = 3.3 m, we can solve for x.
x = (3.3 m * 0.25 * 10^-9 m) / 0.16 * 10^-3 m =~ 5.14 μm
So, the spacing between maxima on the screen is approximately 5.14 micrometers.
#SPJ11