Answer:
Explanation:
The strength of the electric field produced by a charge Q is given by
where
Q is the charge
r is the distance from the charge
k is the Coulomb's constant
In this problem, the electric field that can be detected by the fish is
and the fish can detect the electric field at a distance of
Substituting these numbers into the equation and solving for Q, we find the amount of charge needed:
Answer:
128 s
Explanation:
The distance, speed and time are related as;
Given that the speed = 5 m/s
Distance = 640 m
Time = ?
So,
Thus, Garza takes 128 s to travel 640 m at 5 m/s speed.
Complete Question
A loop of wire lies flat on the horizontal surface in an area with uniform magnetic field directed vertically up. The loop of wire suddenly contracts to half of its initial diameter. As viewed from above induced electric current in the loop is
a. counterclockwise
b. clockwise
c. there is no current in the loop because magnetic field is uniform
d. there is no current in the loop because magnetic field does not change
Answer:
Option A is the correct answer
Explanation:
According to the question the loop of wire contracts to half it initial diameter and will mean that less number of electric field line will pass through the loop and this change in magnetic flux will cause current to flow in the loop of wire and from Lenz's law this current will in the opposite direction of what produced it which is the change in magnetic flux so the current will flow in a counterclockwise direction
Answer:
The longest straw will be 10.328 meters long.
Explanation:
The water will rise up to a height pressure due to which will balance the atmospheric pressure.
We know
Pressure due to water column of height 'h'
Equating both the values we get the value of height 'h' as
Answer:
Please find the attached file for the figure.
Explanation:
Given that a bicyclist speeds along a road at 10 m/s for 6 seconds.
Its acceleration = 10/6 = 1.667 m/s^2
The distance covered = 1/2 × 10 × 6
Distance covered = 30 m
That is, displacement = 30 m
Then she stops for three seconds to make a 180˚ turn and then travels at 5 m/s for 3 seconds.
The acceleration = 5/3 = 1.667 m/s^2
The displacement = 1/2 × 5 × 3
Displacement = 7.5 m
The resultant acceleration will be equal to zero.
While the resultant displacement will be:
Displacement = 30 - 7.5 = 22.5 m
Please find the attached file for the sketch.
As we know that current is defined as rate of flow of charge
so by rearranging the equation we can say
here we know that
here we will substitute it in the above equation
now here limits of time is from t = 0 to t = 1/180s
so here it will be given as
so total charge flow will be 0.44 C
Answer:
The total charge passing a given point in the conductor is 0.438 C.
Explanation:
Given that,
The expression of current is
....(I)
We need to calculate the total charge
On integrating both side of equation (I)
Hence, The total charge passing a given point in the conductor is 0.438 C.
Answer:
Explanation:
Using Conservation of momentum (total final momentum of system is)
m1•v1f + m2•v2 f + m3•v3 f=0
and it must be zero to equal the original momentum( since the original body is at rest).
Given that
original mass M=1.82×10^-26
First disintegrate mass m1=5.18×10^-27kg
In y direction V1f=6×10^6 I'm/s
Second disintegrate mass m2=8.5×10^-27kg
In x direction V2f=4×10^6 im/s
Then the third disintegrate will be
m3=M-m1-m2
m3=1.82×10^-26-5.18×10^-27-8.5×10^-27
m3=4.52×10^-27
And the velocity is unknown
Now using the formula above
m1•v1f + m2•v2 f + m3•v3 f=0
m3•V3f= - m1•v1f - m2•v2 f
4.52E-27V3f=-5.18E-27×6E6j - 8.5E-27×4E6 i
Divide thorough by 4.52E-27
V3f= - 6.88×10^6j - 7.52×10^6i
V3f= - 7.52×10^6i - 6.88×10^6j
The final velocity of the third mass disintegrate is 6.88×10^6j - 7.52×10^6i m/s